首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study investigated diffusive emissions of methane (CH4) and nitrous oxide (N2O) to the atmosphere from three relatively small (3–120 km2) reservoirs (Masinga, Kamburu and Gitaru) on the Tana River (Kenya). Sampling was conducted biweekly in 2011, 2012 and 2013, at sampling sites upstream and downstream of these reservoirs while five sampling campaigns were carried out in 2011, 2012 and 2013 for different sites within each of the reservoirs. The dissolved CH4 (range: 19–2101 nmol/L) and N2O (range: 6.2–11.5 nmol/L) concentrations in the surface waters were generally very low in the three reservoirs, compared with other reservoirs globally. The lower diffusive emissions of CH4 (20–216 µmol/m2 day?1) and N2O (1.0–1.6 µmol/m2 day?1) from these reservoirs, compared with other tropical reservoirs, are probably related to their age (30–40 years), and lower vegetation biomass (savannah) originally present and submerged during their commissioning. The reservoirs with longer water residence times were characterized by higher diffusive CH4 fluxes (216 ± 666 µmol/m2 day?1) and slightly lower N2O fluxes (1.0 ± 1.5 µmol/m2 day?1). The relative contribution of turbine fluxes of CH4 and N2O, compared to diffusive fluxes, was also highly variable among the three dams, being lower in Masinga Reservoir and higher in Gitaru Reservoir.  相似文献   

2.
We report dissolved CO2, CH4 and N2O concentrations in two large East African lakes, Edward (surface area 2,325 km2, average depth of 37 m) and George (surface area 273 km2, average depth of 2 m). Lake George showed modest seasonal and spatial variations, and lower partial pressure of CO2 (pCO2) (26 ± 16 ppm, mean ± standard deviation), CH4 (234 ± 208 nmol/L) and N2O saturation levels (%N2O) (80 ± 9 %) than Lake Edward (404 ± 145 ppm, 357 ± 483 nmol/L, 139 ± 222 %). Surface waters in both lakes were over-saturated in CH4, and Lake George was under-saturated in CO2 while Lake Edward was slightly over-saturated in CO2. This difference was related to higher phytoplankton biomass in Lake George than Lake Edward, with average chlorophyll-a concentrations of 177 ± 125 and 18 ± 25 µg/L, respectively. Permanent high cyanobacterial biomass in Lake George led to uniform dissolved CO2, CH4 and N2O concentrations. In surface waters of Lake Edward, spatial variations of pCO2, CH4 and N2O were related to bottom depth, and locally (in particular in Katwe Bay) also related to the inputs of water from Lake George via the Kazinga Channel, a 40-km natural channel connecting the lakes. Short-term mixing events related to storms increased CO2, CH4 and N2O content in surface waters, in particular for CH4 and N2O. This indicates that mixing events in response to storms can create ‘hot moments’ for CH4 and N2O emissions to the atmosphere in tropical lakes, given the weaker vertical density gradients compared to higher latitude systems.  相似文献   

3.
The distribution, density, biomass and size-structure of the zebra mussel (Dreissena polymorpha) population in Lake Winnipeg were examined between 2017 and 2019. Zebra mussels have colonized most of the available hard substrate in the south basin and Narrows region, but colonization of the north basin remains low at present, even on suitable substrate. Numerical densities and shell free biomass peaked at 5530 ± 953 m?2 and 64.7 ± 57.9 g shell free dry mass m?2 respectively. The distribution appeared to be strongly limited by substrate type and availability, with further limitations on the distribution imposed by physical disturbance in shallow waters and unsuitable substrate in deeper areas of the lake. Zebra mussels <1 year old dominated the populations, and individuals >18 mm were exceedingly rare. Poor recruitment was observed at sites along the eastern side of the south basin compared to elsewhere in the lake. The proximate causes of these differences in colonization success and recruitment are not clear, but may be in part due to heterogeneous patterns of key physico-chemical environmental conditions such as calcium concentrations required for successful development of juvenile mussels and colder water temperatures in the north basin. This study provides a baseline of information on which to track further expansion of zebra mussels in Lake Winnipeg and assist efforts to develop an understanding of how zebra mussels may affect the ecology of Lake Winnipeg.  相似文献   

4.
Periodic deoxygenation events (DO < 1 mg/L) occur in the Richmond River Estuary on the east coast of Australia following flooding and these events may be accompanied by total fish mortality. This study describes the deoxygenation potential of different types of floodplain vegetation in the lower Richmond River catchment and provides a catchment scale estimate of the relative contribution of floodplain vegetation decomposition to deoxygenation of floodwaters. Of the major vegetation types on the floodplain slashed pasture was initially (first 5 to 7 h) the most oxygen demanding vegetation type after inundation (268 ± mg O2 m?2 h?1), followed by dropped tea tree cuttings (195 ± 18 mg O2 m?2 h?1) and harvested cane trash (110 ± 8 mg O2 m?2 h?1). However, 10 h after inundation the oxygen consumption rates of slashed pasture (105 ± 5 mg O2 m?2 h?1) and tea tree cuttings (59 ± 7 mg O2 m?2 h?1) had decreased to a rate less than the harvested cane trash (110 ± 8 mg O2 m?2 h?1). The oxygen demands of the different floodplain vegetation types when inundated were highly correlated with their nitrogen content (r2 = 0.77) and molar C:N ratio (r2 = 0.82) reflecting the dependence of oxygen demand of vegetation types on their labile carbon content. The floodplain of the lower Richmond River (as flooded in February 2001) has the potential to deoxygenate about 12.5 × 103 mL of saturated freshwater at 25°C per day which is sufficient to completely deoxygenate floodwater stored on the floodplain with 3 to 4 days. In addition, oxidation of Fe2+ mobilized during the decomposition of floodplain vegetation via iron reduction and discharged from groundwater and surface runoff in acid sulfate soil environments could account for about 10% of the deoxygenation of floodwater stored on the floodplain. Management options to reduce floodplain deoxygenation include removing cuttings from slashed pasture and transporting off‐site, reducing slashed pasture windrow loads by using comb‐type mowers, returning areas of the floodplain to wetlands to allow the establishment of inundation tolerant vegetation and retaining deoxygenated floodwaters in low lying areas of the floodplain to allow oxygen consumption process to be completed before releasing this water back to the estuary. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Lakes are important sites for carbon fixation and carbon dioxide (CO2) exchange with the atmosphere. Carbon fixation rates have not previously been published for Lake Winnipeg but are important for quantifying the lake’s role in the regional greenhouse gas budget and the lake’s trophic structure and fish habitat. This study measured net ecosystem production (NEP), gross primary production (GPP), and gross respiration (GR) across the lake using a custom-built automated incubator connected to a ship’s water intake during a research cruise between July 31 and August 17, 2018 on Lake Winnipeg. The incubator estimated NEP, GR, and GPP every 60 min while moving along the ship’s track and at anchor, providing high-resolution data that are not obtainable through conventional incubations. The mean NEP for Lake Winnipeg during our survey was ?8.4 ± 5.6 g C m?2 d?1, suggesting that the lake was net heterotrophic and thus a net CO2 source to the atmosphere during the 2018 summer cruise. The high-resolution data revealed significant spatiotemporal variability, including short-lived, highly net productive events that preceded remotely sensed chlorophyll a blooms by several days. Conversely, in regions with high chlorophyll a concentrations, we observed strong net heterotrophy and low nutrients, suggesting respiration was fueled by the degradation of mature, nutrient-limited phytoplankton blooms. The incubator system used in this study demonstrated its utility for monitoring rapid changes in NEP over short spatial scales in a lake which shows heightened regional variability in its physical, biogeochemical, and biological make-up.  相似文献   

6.
Lake Victoria is vulnerable to increasing eutrophication, which has become manifested in ecological changes not yet fully understood. From October 2009 to January 2010, the influence of water quality on zooplankton community structure in three habitats in northern Lake Victoria, including sewage lagoons at the lake shores, Napoleon Gulf (NG) and the interface between the lake and the Nile River (also known as Source of the Nile River), was examined. Selected physico‐chemical parameters (dissolved oxygen concentration; water temperature; electrical conductivity; water depth) were measured in‐situ, while water samples were collected for chlorophyll‐a determinations. Zooplankton was sampled with conical plankton net (mesh size 60 μm; 0.25‐m mouth diameter). The NG and Source of the River Nile (SN) sampling sites exhibited significantly higher species richness, relative to the Sewage Lagoons (SL) site (F2,69 = 68.533; P < 0.05). Higher mean densities and dry biomass of zooplankton was generally a characteristic of the SL site (8715 ± 3241 ind L?1; 1862 ± 451 μg L?1), compared to the NG (119 ± 24 ind L?1; 53 ± 8 μg L?1) and SN sites (151 ± 26 ind L?1; 58 ± 9 μg L?1). Copepoda constituted a high numerical composition of the zooplankton at the NG and SN sites (>90% for both sites), while Rotifera dominated the zooplankton community at the SL site (97%). The mean values (±SE) of soluble reactive phosphorus (4060.7 ± 776.6 μg L?1) and nitrate–nitrogen (2121.7 ± 355.5 μg L?1) were much higher for the SL site, compared with the SN (8.2 ± 1.1 μg L?1; 28.6 ± 5.3 μg L?1, respectively), and NG site (7.8 ± 0.8 μg L?1; 32.7 ± 5.4 μg L?1, respectively). This study indicated the nutrient‐rich conditions observed at the SL site suppress the zooplankton species diversity, but favour species‐specific abundance and biomass. These study results indicate the zooplankton community structure can be used as a biological indicator of water quality in the Lake Victoria region.  相似文献   

7.
Eutrophication has been linked to increased greenhouse gas emissions from inland waters. Phytoplankton blooms in Lake Erie have increased since the 1990s, although its greenhouse gas emissions are not well characterized. We measured CH4 and N2O concentrations and diffusive fluxes in four seasons around the entire lake, and CO2 fluxes in one summer season. Lake Erie is a source of CH4 all year across the lake, concentrated in spring and summer in the Western Basin. Methane emissions ranged from 0.03 to 14.87 mg C m−2 d-1. Methane is predominantly biogenic, and natural gas leaks are an insignificant source. While Lake Erie is an overall N2O source, it is an N2O sink in winter and occasionally during summer. Emissions of N2O ranged from −0.08 to 1.22 mg N m−2 d-1. We also measured CO2 fluxes in summer only, when Lake Erie is a small atmospheric CO2 sink. While areal fluxes of CH4 and N2O are similar to those observed elsewhere, total fluxes from Lake Erie are higher due to its surface area. Lake Erie emits ~ 6300 (±19%) metric tons of CH4-C yr−1 and ~600 (±37%) metric tons N2O-N yr−1: almost 500,000 metric tons CO2-eq yr−1 total. This is the first comprehensive dataset of CH4 and N2O concentrations and diffusive emissions in a very large lake. More measurements and monitoring are needed to determine whether increased eutrophication in the Great Lakes is tied to increased emissions of these powerful climate forcers in a possible positive feedback to climate warming.  相似文献   

8.
The Nile tilapia (Oreochromis niloticus) was introduced into Lake Victoria in the early 1950s and 1960s and has since become the dominant tilapiine in the lake. This study investigated the growth and population parameters of O. niloticus in Lake Victoria on the basis of length–frequency data collected during the period June 2014 and June 2015. The asymptotic length (L) had a mean (±SE) value of 46.24 ± 0.04 cm TL, growth curvature (K) of 0.69 ± 0.25 year?1, total mortality (Z) of 2.18 ± 0.80 year?1, a natural mortality (M) of 1.14 ± 0.28 year?1, a fishing mortality (F) of 1.05 ± 0.53 year?1, an exploitation rate (E) of 0.46 ± 0.08, a growth performance index (?) of 3.14 ± 0.17 and a length at first capture (LC50) of 20.31 ± 0.40 cm TL. Comparing the results of this study with previous studies indicates the parameters K, Z and M have increased, whereas ?, F, E and LC50 have decreased. Changes in these parameters could be attributed to the existing high fishing capacity, and changing lake conditions. Thus, management measures should include continued restriction on illegal fishing methods and gears, such as the use of undersized gillnets (<5 in. mesh size) and beach seines. More attention also should be directed to the implementation of measures to control pollution of the lake from its various sources.  相似文献   

9.
Carbon gases (methane, CH4, and carbon dioxide, CO2) were measured for the first time in sediments of the Lobo‐Broa Reservoir, near São Carlos in São Paulo State, Brazil. It is believed these are the first measurements of this kind in any of the many reservoirs located in Brazil. Even though the Lobo‐Broa Reservoir is classified as oligotrophic, the sediment gas concentrations were exceedingly high, ranging from 0.4–3 mmol L?1 for CH4 and 1–9 mmol L?1 for CO2. Both gases exceeded their in situ gas saturation values at these shallow water depths (7 m in central basin; 11 m at dam), resulting in numerous sediment bubbles. Organic matter was highly concentrated in the reservoir sediments, averaging 25.5% loss on ignition (LOI) (dam) to 26.9% LOI (central basin) for the 0–12 cm depth interval, with values as high as 29–30% LOI (12% organic carbon) in the surface 0–5 mm layer. The theoretical flux of dissolved pore water carbon gases to the sediment–water interface (SWI) averaged 3.4 mmol L?1 m?2 day?1 CH4 and 7.3 mmol L?1 m?2 day?1 CO2 for the surface 0–10 mm. From gas emission measurements at the water surface, it was calculated that 90% of CH4 is consumed either at the SWI or in the water column, resulting in a loss of 0.31 mmol L?1 m?2 day?1 of CH4 to the atmosphere. However, only 20% of the total CO2 gas transported across the water–atmosphere interface (36.3 mmol L?1 m?2 day?1, or 1600 mg CO2 m?2 day?1) was produced in the sediments. The remaining 80% of CO2 probably comes from other carbon sources. With CH4 oxidation in the aerobic water column, close to 30% of the carbon gas flux to the atmosphere could be accounted for by gas production of CO2 and CH4 in the sediments and their diffuse transport to the water column.  相似文献   

10.
A shallow site in the western arm of Lake Superior near Duluth, Minnesota was sampled bimonthly from May to October during 1989 and 1990 to identify seasonal and annual changes in bacterioplankton communities. The greatest change in bacterioplankton abundance was between 1989 (1.48 × 109/L ± 0.06 SE) and 1990 (1.14 × 109/L ± 0.06 SE). The majority of bacterial cells (65%) were cocci. Individual cells were larger during 1989 (0.067 μm3 ± 0.007 SE) than 1990 (0.025 μm3 ± 0.002 SE). Although the rate of thymidine incorporation varied from 0.2 to 47.0 pmol/L/h over both years (mean = 12.1 pmol/L/h ± 1.3 SE), no consistent temporal or spatial changes were detected. Bacteria were more abundant (∼2×) and productive (∼10×) at the mouth of the Lester River than offshore of this site. During July and August, a benthic nepheloid layer (BNL) formed at shallow offshore sites but bacterioplankton abundance and production in this BNL were usually similar to values measured in the hypolimnion. Three additional sites from the Duluth basin northeast to the Chefswet basin were sampled during late summer (Aug-Sept) 1990 to identify spatial differences in bacterioplankton communities. Although the number of bacteria was often greater at shallower sites compared to deeper sites further offshore, a strong gradient was not found and bacterial production was similar at all sites. These results may be due in part to the lake basin morphology in this region of Lake Superior, as well as the time when these additional offshore sites were investigated.  相似文献   

11.
Water samples from the central and eastern basins of Lake Erie were analyzed for volatile chloro- and chlorofluorocarbons for a one-week period in each of 1977 and 1978. The following contaminants were observed with mean concentrations and standard deviations in 1978 with the corresponding values for 1977 in parentheses: Dichlorodifluoromethane (Freon 12) 76±38 (73±36) ng°L?1; trichlorofluoromethane (Freon 11) 34±26 (46±40) ng·L?1; chloroform 15±4 ng·L?1; carbon tetrachloride 19±11 (37±20) ng·LT?1; trichloroethylene 20±13 (11±9) ng·L?1.Except for carbon tetrachloride and trichloroethylene, the distribution patterns appear to show little correlation with each other. Chloroform concentrations were relatively uniform, however the carbon tetrachloride and trichloroethylene concentrations appear to be point-source related with discharges along the south shore of Lake Erie. Freon 12 concentrations were generally higher in the eastern basin than in the central basin, while Freon 11 levels were high and relatively uniform throughout the study area.  相似文献   

12.
The amphipod Diporeia spp. has historically been an important component of the benthic food web of the Laurentian Great Lakes. The Great Lakes Water Quality Agreement included its population density as an indicator of ecological condition for Lake Superior, with target values of 220–320 m?2 in nearshore areas (≤100 m depth) and 30–160 m?2 in offshore areas (>100 m). To assess the status of Diporeia in Lake Superior, we used a probability-based lake-wide survey design to obtain estimates of Diporeia density and biomass in 2006, 2011 and 2016. A PONAR grab sampler was used to collect Diporeia at 50–53 sites each year, with approximately half in the nearshore (<100 m depth) region of the lake and half in the offshore. The mean area-weighted lake-wide density was 395 ± 56 (SE) m?2 in 2006, 756 ± 129 m?2 in 2011, and 502 ± 60 m?2 in 2016. For all years, both density and biomass were greater in the nearshore than in the offshore stratum. The densities for 2006–2016 were 3–5 times higher than those reported from a lake-wide survey conducted in 1973 by the Canada Centre for Inland Waters. The severe declines in Diporeia populations observed in the other Great Lakes during recent decades have apparently not occurred in Lake Superior. Further research is needed to understand spatial and temporal variability of Diporeia populations in Lake Superior to enhance the utility of Diporeia density as an indicator of benthic condition.  相似文献   

13.
Sediment-water nitrogen fluxes and transformations were examined at two sites in Saginaw Bay, Lake Huron, as a model for sandy freshwater sediments. Substantial ammonium release rates (74 to 350 μmole NH4+/m2/h1) were observed in flow-through cores and in situ benthic chamber experiments. Sediment-water ammonium fluxes were similar at the inner and outer bay stations even though inner bay waters are enriched with nutrients from the Saginaw River. The high net flux of remineralized ammonium into the overlying water from these sandy sediments resembles typical data for marine systems (11 to 470 μmole NH4+/m2/h1) but were higher than those reported for depositional freshwater sediments (0 to 15 μmole NH4+/m2/h1; Seitzinger 1988). Addition of montmorillonite clay (ca. 1 kg dry weight/m2) to the top of the sandy cores reduced ammonium flux. Mean “steady-state” ammonium flux following clay addition was 46 ± 2 (SE) % of the initial rates as compared to 81 ± 8% of the initial rates without clay addition. Zebra mussel excretion dominanted ammonium regeneration in the inner bay where the bivalve was abundant, but addition of zebra mussel feces/psuedofeces (3.0 g dw/m2) to sediments did not increase ammonium or nitrate flux. Partial nitrification of ammonium at the sediment-water interface was suggested by removal of added 15NH4+ from lake water passing over dark sediment cores. Sediment-water fluxes of nitrogen obtained from flow-through sediment cores resembled those from in situ benthic chambers. However, extended static incubations in gas-tight denitrification chambers caused more of the regenerated nitrogen to be nitrified and denitrified than occurred with the other two measurement systems.  相似文献   

14.
This study investigated the growth, mortality and recruitment of Rastrineobola argentea in Lake Victoria on the basis of length–frequency data collected during the period 2014–2015. The asymptotic length (L ) had a mean (±SE ) value of 53.50 ± 0.50 mm SL , growth curvature (K ) of 0.81 ± 0.06 year?1, total mortality (Z ) of 2.96 ± 0.12 year?1, a natural mortality (M ) of 1.23 ± 0.06 year?1, a fishing mortality (F ) of 1.74 ± 0.07 year?1, an exploitation rate (E ) of 0.59 ± 0.01, a growth performance index (?′ ) of 3.36 ± 0.02 and a length at 50% capture (L 50) of 28.25 ± 0.43 mm SL . The fish exhibited a peak breeding during the months of May and August. The Beverton and Holt relative yield‐per‐recruit model indicated mean (±SE ) indices as 0.37 ± 0.01 for optimum sustainable yield (E 0.5), 0.76 ± 0.01 for maximum sustainable yield (E max) and 0.66 ± 0.01 for economic yield (E 0.1). Compared with previous studies, there is a great decline in the sizes of R. argentea stocks in Lake Victoria. Thus, management measures should include restriction on illegal seine nets <10 mm mesh size and re‐enforcement of a fishing ban or a closed season.  相似文献   

15.
The atmospheric concentration of methane (CH4) exerts a strong influence on the global climate. Notably, wetlands are important CH4 sources, whose emission represents an ecosystem process depending on such wetland characteristics as organic matter, temperature, pH, methanogenesis and CH4 oxidation, all of which vary on the basis of the type of wetland. Methane fluxes were investigated in a preliminary study in the region, using the chamber method in the open water and macrophyte‐infested wetlands of swampy and riverine types in Kilifi, a coastal district in Kenya, Africa. Despite a lack of significant interactions, the macrophyte‐infested areas emitted the highest quantity of methane of about 21.96 ± 0.04 mg CH4 m?2 day?1, compared with the water areas that emitted about 19.35 ± 0.05 mg CH4 m?2 day?1. The preliminary CH4 fluxes measured in this study are below the range reported from previous wetland field experiments in the tropics and temperate regions, indicating the need to conduct a series of similar experiments to produce more precise total estimates in the entire region.  相似文献   

16.
A new high-resolution (500 × 500 m), three-dimensional hydrodynamic model was applied to Lake Winnipeg to study summer and winter water circulation, temperature, and ice-cover during 2016–17. The model was run with a combination of buoy-based observations and the outputs from the Global Environmental Multiscale model forcing. Four primary riverine inflows and two outflows were considered in the model. The bathymetry from a previous study by the authors was revised using a 2018 survey covering the South Basin and the Narrows. Comparisons of this new model with the previous model setup (2 km resolution) show noticeable improvements in all simulated parameters. In the Narrows, where seiche-driven flows have predominant oscillation periods of ~27 h and ~17 h, the RMSE of simulated currents is 0.1 m s?1, half of that of the previous simulations. The new model was able to reasonably simulate the spatial development of ice-cover over the lake. The ice-free period circulation results show that there are two clockwise and counterclockwise gyres in the North Basin, and a weak seasonal clockwise gyre in the South Basin. Monthly circulation patterns differ from those during short wind events due to spatiotemporal variability of wind patterns. The materials from the Red and the Winnipeg Rivers need ~50 days to reach the Narrows before transported from the South Basin to the North Basin. The daily inter-basin exchange flow oscillations during the ice-free period can range up to ~3.5 × 104 m3 s?1, while under-ice daily exchanges are always northwards with values depending on inflowing riverine discharge up to ~0.5 × 104 m3 s?1.  相似文献   

17.
We investigate the nearshore-offshore exchange of hypoxic waters during episodic coastal upwelling events in the nearshore waters of northern Lake Erie using intensive field observations and a validated hydrodynamic and water quality model. We observe wind-induced coastal upwelling events to be the dominant nearshore physical process in the lake which are energized every 5–10 days. When the winds were predominantly blowing from the west or south-west, epilimnetic waters were transported to the offshore bringing in hypolimnetic waters with low temperature (8–10 °C), dissolved oxygen (DO: 0–6 mg L?1) and pH (6–7) to the nearshore zones. During these events, vertical diffusivity coefficients decreased from 10?2 m2 s?1 to values as low as ~ 10?7 m2 s?1. In late summer, the coastal upwelling events in the nearshore waters lower the near bottom DO to hypoxic levels (DO < 2 mg L?1). Lake-wide observations of DO and pH show that they are positively and linearly correlated while in the nearshore DO and pH experience spatial and temporal variability where upwelling events were developed, which were further assessed using a three-dimensional model. The model accuracy to reproduce offshore hypoxia was first assessed on a lake-wide basis using a coarse resolution model for a five-year period (2008–2012) and in nearshore waters using a higher resolution model for 2013. We use the model results to delineate the near bottom areas experiencing hypoxia at time scales longer than 48 h.  相似文献   

18.
The city of Puno in Peru is the largest producer of trout (Oncorhynchus mykiss) using intensive floating cage systems installed in Lake Titicaca. As a result, the increase in diseases and the use of antibiotics to control them during the production cycle has been documented. We study the impact of antibiotics on drinking water, trout tissues and the lake's aquatic ecosystem. Nine antibiotics were monitored: tetracyclines, sulfonamides and fluoroquinolones. The samples were collected randomly and analyzed by liquid chromatography coupled to mass spectrometry and the solid-phase extraction system. The sediment samples and surface water samples contain high concentrations of antibiotics. All sediments contain fluoroquinolones (3.74 mg kg?1) and tetracyclines (3.08 mg kg?1) and the surface water contains fluoroquinolones of up to 408.2 and 652.7 ng L?1 in the dry and rainy seasons respectively (P > 0.05). Drinking water samples from the city of Puno collected at sampling points with Lake Titicaca as a source of drinking water, reached an average of 188.1 and 222.2 ng L?1 of ciprofloxacin in dry and rainy seasons respectively. Complementarily, in trout tissues, it reached 7.8 μg kg?1 in oxytetracycline 8.7 μg kg?1 in sulfatizole, 4.2 μg kg?1 in ciprofloxacin and 3.6 μg kg?1 in sarafloxacin. The presence of these antibiotics in surface water is attributed to the aquaculture activity, in addition to runoff and wastewater, and their presence can have detrimental effects on the aquatic ecosystem, and even affect public health due to the consumption of aquaculture products and drinking water contaminated with antibiotic residues.  相似文献   

19.
There have been few direct measurements of phytoplankton production made in Lake Michigan since invasive dreissenid mussels became established in the lake. Here we report the results of 64 measurements of phytoplankton primary production made in Lake Michigan during 2016 and 2017. We conducted two lake-wide surveys, one in the spring 2016 isothermal period and one after summer stratification in 2017 and examined seasonal production with bi-weekly sampling between May and November 2017 at an offshore station in the southwestern part of the lake. We assessed nearshore-offshore gradients by sampling at three transect locations on three occasions in 2017. Spring 2016 production and production:biomass (P:B) ratios (reflective of growth rates) were similar across the lake and were higher than those reported before dreissenid mussels became established, suggesting that despite decreases in phytoplankton biomass, growth rates remain high. Summer 2017 production and growth rates increased from south to north. Areal production in 2017 peaked in late summer. Mean 2017 summer production (499 ± 129 mg C m?2 day?1) was lower than values reported prior to the mussel invasion, and the fraction of total production occurring in the deep chlorophyll layer was about half that measured pre-mussels. At the offshore site picoplankton accounted for almost 50 % of the chlorophyll. As spring P:B ratios have increased and summer P:B and seston carbon:phosphorus ratios have not changed, we conclude that the decrease in phytoplankton production in Lake Michigan is due primarily to grazing by mussels rather than to stronger nutrient limitation.  相似文献   

20.
The physical, chemical, and biological dynamics under changing atmospheric conditions of Laguna Lake, Philippines were analyzed from intensive observations. Diel measurements were conducted for 48 continuous hours for both dry and wet tropical seasons in addition to fine resolution long-term monitoring. Results revealed significant vertical and diel variations of lake variables in spite of a shallow water depth (2.5 m) caused by the intense surface heating from solar irradiance (~800 W m?2) and accentuated by the lake's high turbidity (16–32 ftu). Late afternoon land-lake breeze (~5–7 m s?1) regularly breaks daytime thermal stratification, and convective cooling at night maintains isothermal condition until dawn of the next day. The stratified condition demonstrated a wind-driven, density-induced 2-layer current pattern with a windward moving epilimnion (~4 folds faster) and a compensating hypolimnetic flow in the general lake circulation direction. Laguna Lake was observed to have a dominating diel cycle but also undergoes significant seasonal limnological variations brought primarily by climate, hydrology, and its interaction with the adjacent sea. Significantly correlated variations of pH, chlorophyll-a and DO in the dry season were indicative of the higher biological activity associated with the intrusion of polluted waters from Metro Manila. The non-occurrence of thermal over-turn was observed to be regularly followed by bottom hypoxic conditions (2–4 mg L?1), indicative of the eutrophic condition of the lake and the importance of diel wind-induced mixing in the bottom supply of DO. Laguna Lake was found to be predominantly net heterotrophic (GPP:R < 1, NEP < 0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号