首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Si12 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructures of the joint were analyzed and the average tensile strength of the joint was estimated. The results show that a sound dissimilar metals joint is obtained by TIG welding-brazing. Slag and residual flux on steel surface can be removed by sanding easily. The joint has dual characteristics: in aluminum alloy side, it is a welded joint, while in stainless steel side, it is a brazed joint. The whole interface layer, unequal in thickness at different position, ranges from 5μm to 25μm. The average tensile strength of the butt joint reaches 120MPa and the fracture occurs at the interface layer.  相似文献   

2.
Resistance spot brazing was used to perform the lap test of pure aluminum 1060 and SGCC hot-dip galvanized steel plate, the joint interface structure was studied, and the mechanical properties of the joint were tested. The results show that the aluminum-silicon(AlSi) alloy solder used in the test has good wetting, and an intermetallic compound with a double-layer structure and uneven thickness is produced at the welded joint interface after welding. The thickness is 10 μm. The welding current is at 7.8 kA, the tensile shear load of the joint reaches a peak value of about 4.72 kN. Under the same process parameters, the tensile shear load of the resistance spot brazed joint is significantly higher than that of the spot welded joint. The joint fracture mostly occurs on the aluminum plate side, and mainly at the heat-affected zone and not at the welding point.It indicates that the quality of the spot brazed joint is good, but due to the local "unbrazed" defect on the aluminum side interface of the weld, tensile stress will occur at the weld interface and the stress effect on the intermetallic compound. It is easy to produce cracks.  相似文献   

3.
Ultrasonic assisted friction stir welding (UAFSW) is a recent modification of conventional friction stir welding, which adds ultrasonic energy directly into the friction stir welding area by the pin. In this study, 2A12 aluminum alloy was welded by this process and conventional, respectively. The tensile tests, microstructure and fracture surface of FSW joint and UAFSW joint were analyzed. The research results show that the surface forming texture of ultrasonic assisted friction stir welding joint, compared with conventional, is finer and more uniform, showing metallic matte color. The grains are much finer in weld nugget zone, thermo-mechanically affected zone and heat-affected zone; S-phase particles size is much smaller and distribution is more homogeneous in the matrix. The tensile strength of UAFSW joint is 94. 13% of base metal, and the elongation is 11.77%. The tensile strength of FSW joint is 83.15% of base metal, and the elongation is 8.81%. The tests results reveal that ultrasonic vibration can improve the tensile strength and the elongation of welded joints.  相似文献   

4.
Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper.In the noninterlayer liquid phase diffusion welding,the key processing parameters affecting the strength of joint is welding temperature.When temperature rises beyond solidus temperature, the bonded line vanishes. The strength of joint reaches the maximum and becomes constant when welding temperature is close to liquid phase temperature. Oxide film in the interface is no longer detected by SEM in the welded joint. With this kind of technique, particle reinforced aluminum matrix composite Al2O3p/6061Al is welded successfully, and the joint strength is about 80% of the strength of composite(as-casted).In the laser welding, results indicate that because of the huge specific surface area of the reinforcement, the interracial reaction between the matrix and the reinforcement is restrained intensively at certain laser power and pulsed laser beam.The laser pulse frequency directly affects the reinforcement segregation and the reinforcement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. The maximum strength of the weld can reach 70% of the strength of the parent.  相似文献   

5.
A bypass-current metal inert-gas welding–brazing technology has been developed to join aluminum/galvanized steel and aluminum/stainless steel. Microstructure, intermetallic compounds and hardness distribution of the joints were studied by optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction analysis and microhardness tests. Comparative study on both types of joints was carried out. During aluminum to galvanized steel assembling, finer seam was obtained under a more stable process. A uniform interfacial reaction layer with a thickness of 2–4 μm was formed. During aluminum to stainless steel assembling, an uneven interfacial reaction layer with a thickness of 5–45 μm was formed. Intermetallic compounds at the interface of aluminum/galvanized steel were identified as Fe–Al–Si–Zn complex phases, while Fe–Al–Cr–Ni complex phases were found at the aluminum/stainless steel interface.Microhardness of interfacial layer increases rapidly within reaction layer due to possible brittle intermetallic compounds.  相似文献   

6.
Within the bonded interface of metal bars joint produced by conventional solid state bonding process ( such as flash welding, resistance butt welding, friction welding and so on), the inclusions are often present, which degrade the ductility of joint. A new process of transformation-diffusion brazing is proposed, in which an amorphous foil containing melting point depressant is preplaced between the interfaces to be joined, and the assembly is repeatedly heated/cooled without holding time at peak temperature. A low carbon steel bars, BNi-2 amorphous foil and resistance butt welding machine were used. The results show that surfuce contamination can be disrupted by the dissolution of base metal into molten interlayer in comparison with conventional process, and the ductility of joint can be improved by increasing the times of temperature cycles on line. In addition, transformation-diffusion brazing can be done with relatively simple and inexpensive system in comparison with transient liquid phase bonding.  相似文献   

7.
Experiments were carried out with bypass-current MIG welding–brazing of magnesium alloy to galvanized steel to investigate the effect of heat input on the microstructure and mechanical properties of lap joints. Experimental results indicated that the joint efficiency tended to increase at first and then to reduce with the increase of heat input. The joint efficiency reached its maximum of about 70% when the heat input was 155 J/mm. The metallurgical bonding between magnesium alloy and steel was a thin continuous reaction layer, and the intermetallic compound layer consisted of Mg–Zn and slight Fe–Al phases. It is concluded that bypass-current MIG welding–brazing is a stable welding process, which can be used to achieve defect-free joining of magnesium alloy to steel with good weld appearances.  相似文献   

8.
The technology of laser-MIG hybrid welding is hotspot in welding researched field at present.It can improve the velocity of the welding,reduce the distortion of the welding,optimize the structure of the welding joint and etc..The 5052 aluminum alloy of the 10mm thick was welded by the laser-MIG hybrid welding.The structure,the alloy elements profile and the mechanical property of the welded joint are researched by the optical microscope,SEM,sclerometer and etc..The results showed:The medium thick Al alloy was welded in high speed by the laser-MIG hybrid welding.The appearance of the welding joint is well.The weld joint and the weld interface are fine.The intenerate region in the welding joint is small.The tensile strength in welding joint has achieved 94.4% of that in base metal.  相似文献   

9.
Laser fusion brazing welding was proposed.Galvanized steel/AA6061 lapped joint was obtained by laser fusion brazing welding technique using the laser-induced aluminium molten pool spreading and wetting the solid steel surface.Wide joint interface was formed using the rectangular laser beam coupled with the synchronous powder feeding.The result showed that the tiny structure with the composition of a-Al and Al–Si eutectic was formed in the weld close to the Al side.And close to the steel side,a layer of compact Fe–Al–Si intermetallics,including the Al-rich FeAl3,Fe2Al5 phases and Al–Fe–Si s1 phase,was generated with the thickness of about 10–20 lm.Transverse tensile shows the brittlefractured characteristic along to the seam/steel interface with the maximum yield strength of 152.5 MPa due to the existence of hardening phases s1 and Al–Fe intermetallics.  相似文献   

10.
Plasma-MIG (metal inert gas arc welding) hybrid welding of 6061 aluminum alloy with 6 mm thickness using ER5356 welding wire was carried out.The microstructures and mechanical properties of the welded joint were investigated by optical microscopy,X-ray diffraction (XRD),energy dispersive spectroscopy (EDS),tensile test,hardness test and scanning electron microscope (SEM) were used to judge the type of tensile fracture.The results showed that the tensile strength of welded joint was 142 MPa which was 53.6% of the strength of the base metal.The welding seam zone was characterized by dendritic structure.In the fusion zone,the columnar grains existed at one side of the welding seam.The fibrous organization was found in the base metal,and also in the heat affected zone (HAZ) where the recrystallization occurred.The HAZ was the weakest position of the welded joint due to the coarsening of Mg2Si phase.The type of tensile fracture was ductile fracture.  相似文献   

11.
Two dissimilar materials, aluminum alloy and aluminum-coated steel, were joined by cold metal transfer process using AlSi5 filler wire. To this end, the steel was coated with Al-Si. The steel did not melt and aluminum was melt to form the joint during the process, it was actually cold metal transfer welding-brazing. The macrostructure, microstructure, alloy element distribution, and inter-metallic compounds were analyzed by optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. It was found that the Al-Si coating dissolved into the weld metal. The pre-existing thin Fe-Al-Si ternary inter-metallic compounds in the interface between the Al-Si coating layer and base metal steel also partially dissolved into the weld zone, tending to reduce the thickness of inter-metallic compounds. Approximate 3 μm thick undissolved inter-metallic compound was found at the interface after welding which could guarantee sound bonding strength in dissimilar materials joining. The sample was fractured at the fusion zone near the aluminum side in the tensile test. The ultimate tensile strength was about 156 MPa, and the fracture mode is ductile failure in nature according to its morphology.  相似文献   

12.
Electron beam welding experiments of titanium alloys with different vanadium content to stainless steel,as well as alpha titanium to stainless steel using vanadium sheets as filler metal and transition portion were carried out.Microstructures of the joints were examined by scanning electron microscope.The properties were evaluated by microhardness and tensile strength.It was shown that electron beam welding is not feasible due to the brittle Ti-Fe intermetallics with high hardness.Increase of vanadium content in base metal can restrain but can’t avoid the formation of cracks.When vanadium content was too large,the joint was embrittled by FeTi compound with supersaturated V and also cracked after welding.Crack free joint was achieved by using vanadium transition portion which can prevent the contact of Ti and Fe elements.However,the formation of brittle σ intermetallics reduced the tensile strength of the joint,only up to 134MPa.  相似文献   

13.
A 4 kW fiber laser was chosen to weld the new hot-rolled nano-scale precipitation-strengthened steel with a thickness of 4.5 mm. The effect of laser power, defocusing distance, and welding speed on the welded joint appearance was examined, and the microstructure and mechanical properties on the typical butt joints were investigated. Results showed that increasing laser welding power may cause faster downward flow of molten metal to produce greater root humping. With the welding speed increasing, the average welding seam (WS) width decreased, and the average WS and heat-affected zone (HAZ) hardness increased. The microstructures of WS, fusion line, and coarse grain heat-affected zone were lath martensite, but the growth direction of the original austenite grain boundaries was significantly different. The microstructures of fine grain heat-affected zone were ferrite and martensite, and the microstructure of mixed grain heat- affected zone contained ferrite, massive M/A island, and a small amount of martensite. The micro-hardness values of WS, HAZ, and base metal (BM) were 358, 302, and 265 HV, respectively. The butt joint fracture at the BM far from the WS and the welded joint tensile strength are observed to follow proportional relationship with hardness.  相似文献   

14.
Laser beam welding of aluminum alloys is expected to offer good mechanical properties of welded joints. In this experimental work reported, CO2 laser beam autogenoas welding and wire feed welding are conducted on 4 mm thick 5083- H321 aluminum alloy sheets at different welding variables. The mechanical properties and microstructure characteristics of the welds are evaluated through tensile tests, micro-hardness tests, optical microscopy and scanning electron microscopy (SEM). Experimental results indicate that both the tensile strength and hardness of laser beam welds are affected by the constitution of filler material, except the yield strength. The soften region of laser beam welds is not in the heat-affected zone ( HAZ ). The tensile fracture of laser beam welded specimens takes place in the weld zone and close to the weld boundary because of different filler materials. Some pores are found on the fracture face, including hydrogen porosities and blow holes, but these pores have no influence on the tensile strength of laser beam welds. Tensile strength values of laser beam welds with filler wire are up to 345.57 MPa, 93% of base material values, and yield strengths of laser beam welds are equivalent to those of base metal (264. 50 MPa).  相似文献   

15.
The fatigue properties of friction stir welded(FSW) butt joint and base metal of MB8 magnesium alloy were investigated.The comparative fatigue tests were carried out using EHF-EM200K2-070-1A fatigue testing machine for both FSW butt joint and base metal specimens.The fatigue fractures were observed and analyzed using a scanning electron microscope of JSM-6063 LA type.The experimental results show that the fatigue performance of the FSW butt joint of MB8 magnesium alloy is sharply decreased.The conditional fatigue limit(2 × 10~6) of base metal and welded butt joint is about77.44 MPa and 49.91 MPa,respectively.The conditional fatigue limit(2 × 10~6) of the welded butt joint is 64.45%of that of base metal.The main reasons are that the welding can lead to stress concentration in the flash area,tensile welding residual stress in the welded joint(The residual stress value was 30.5 MPa),as well as the grain size is not uniform in the heat-affected zone.The cleavage steps or quasi-cleavage patterns present on the fatigue fracture surface,the fracture type of the FSW butt joint belongs to a brittle fracture.  相似文献   

16.
The plates with 20mm thickness of 7A52 aluminum alloy were welded by electron beam welding and TANDEM welding with ER5356 filler,respectively.The microstructure and mechanical properties of the joints were investigated.The results showed that the microstructure of EBW metal was finer and tighter than TANDEM welding.The heat-affected zone of the EBW joint was narrower,its hardness was higher and the tensile strength improved obviously compared to TANDEM welding.Excellent quality control of the EBW joint was made without abnormal porosity,inclusions and micro-cracks.Therefore,the EBW joint of 7A52 aluminum alloy showed excellent performance.  相似文献   

17.
Aluminum alloy plates were joined to galvanized steel sheets with lap joint by laser-MIG arc hybrid brazing- fusion welding with AlSi5, AlSi12, AlMg5 filler wires, respectively. The influences of Si and Mg on the microstructure and mechanical properties of the brazed-fusion welded joint were studied. The increase of Si element in the fusion weld can make the grain refined, and increase the microhardness of the fusion weld. Therefore, the microhardness in fusion weld made from AlSi12 and AlSi5 filler wires can be up to 98.4 HV0.01 and 96.8 HV0.01, which is higher than that from AlMg5 filler wire of 70.4 HV0.01. The highest tensile strength can reach 178.9 MPa made with AlMg5 filler wire. The tensile strength is 172.43 MPa made with AlSi5 filler wire. However, the lowest tensile strength is 144 MPa made with AlSi12 filler wire. The average thicknesses of the intermetallic compounds (IMCs) layer with ,AlSi5 AlSi12, AlMg5 filler wires are 1.49-2.64 μm. The IMCs layer made from AlSi5, AlSi12 filler wires are identified as FeAl2, Fe2Al5 , Fe4 Al13 and Al0.5Fe3Si0.5, that from AlMg5 filler wire are identified as FeAl2 , Fe2Al5 and Fe4Al13.  相似文献   

18.
王敏  王宸煜 《中国焊接》2003,12(2):103-106
A group of projection welding experiments and joints tension-shear tests are carried out for cold-rolled steel sheets, galvanized steel sheets (GSS) without treatment, GSS with phosphating and GSS with surface greasing, respectively. The experimental results are regressively analyzed on the computers, then the projection welded joint tension-shear strength curve and the perfect welding currents range of each material are obtained. The results show that surface treatments of galvanized steels have effects on their spot weldabilities. Among the four kinds of materials, GSS with surface greasing have the worst spot weldability, for they need higher welding current and have a narrow welding currem range.  相似文献   

19.
The microstructure and mechanical properties of steel/Al structure material produced by additive manufacturing(AM) was investigated in this work based on the cold metal transfer welding.The results show that the microstructure gradually changed from the steel side to the aluminum side.The microstructure in the steel layer consisted of vermiform like 8ferrite and austenite structure,while in the aluminum layer the microstructure was constituted by α-Al grains and typical reticulate distributive Al-Si eutectic structure.Besides,a 7 μm thickness Ni-Al intermetallic compound layer was emerged at the interface of nickel and aluminum layer.The maximum room-temperature tensile strength of the Steel-Al structure materials was found to be 54 MPa,the rupture morphology showed a brittle fracture characteristic.  相似文献   

20.
This paper studies mechanical property and fiactography of the welded joints obtained in different welding parameters such as welding heat and welding press wlth/without gas shield in TiNi shape memory alloy precise pulse resistancebutt welding using tensile stength test, XRD, SEM and TEM measures. The optimum welding parameters obtaining high tensile strength welded joint are SOL On the condition of welding press magneting current 2 A and welding heat 75%, the joint strength is the highest. This is important for to study other properties of TiNi shape memory alloy further. The experimental results state that argon gas shield haze different effects on different welding parameters, less on welding press,but great on welding heat. But excessive welding press and welding heat have great effects on joint tensile strength. Too high welding heat can produce the new intermetallic compound, this intermetallic compound lead to dislocation density to increase and form the potential crack initiation, which can easily make the flint fracture under stress effect and decrease the shape memory ratio of joint for high density dislocation groups existing in the twinned martensite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号