首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Al掺杂Li_2MnSiO_4锂离子电池正极材料的合成和电化学性能   总被引:1,自引:1,他引:0  
以Li2SiO3、Mn(CH3COO)2.4H2O和Al(OH)3为原料,用传统高温固相合成法成功制备出Li2Al0.1Mn0.9SiO4锂离子电池正极材料。采用XRD、FESEM分析了正极材料的相组成、结构和形貌,利用电池测试仪测试了正极材料的电化学性能。研究结果表明,固相合成的产物主相为Li2Al0.1Mn0.9SiO4,同时存在少量的杂质,产物表面形貌为非球形颗粒,颗粒尺寸为100~500 nm。实验结果表明,Al掺杂后,正极材料的可逆容量和循环寿命都得到提高。正极材料电化学性能提高的机理在于Al掺杂稳定了Li2MnSiO4正极材料的结构。  相似文献   

2.
采用固相法合成了Li2Mn1-xMgxSiO4掺杂型正极材料,并用TG-DTA、XRD、SEM和电化学性能测试对材料进行了表征。前驱体的TG-DTA曲线和XRD物相分析表明,合成Li2MnSiO4时优化的煅烧温度为750℃。XRD测试表明Li2Mn1-xMgxSiO4具有正交结构,对应Pmn21空间群,掺镁可以提高样品主相的结晶度。掺Mg对微观形貌影响明显,适量掺杂可以得到粒径均匀、少团聚的亚微米级粉体。将Li2Mn1-xMgxSiO4组装成扣式电池进行电化学测试的结果表明,Li2Mn0.98Mg0.02SiO4样品性能最好,首次放电比容量达到124.6mAh/g,为理论容量的38%,循环20次后放电容量仍有60mAh/g。  相似文献   

3.
以金红石型TiO2、Li2CO3和Al2O3为原料,采用高温固相法制备锂离子电池负极材料Li4Ti5O12和Li4AlxTi5-xO12(x=0,0.025,0.05,0.1,0.2,0.4)。利用X射线衍射仪、扫描电镜、半电池充放电测试和交流阻抗测试研究材料的物相、结构、形貌以及电化学性能。结果表明:Al掺杂不会改变Li4AlxTi5-xO12的尖晶石结构,但会导致材料颗粒尺寸增大;适当Al掺杂后,材料的循环稳定性和极化性能得到改善,充放电比容量和可逆比容量不同程度降低;Li4Al0.025Ti4.975O12具有最优的电化学性能,0.1C倍率下首次充电比容量达到156.7 mA.h/g。  相似文献   

4.
在三元液相体系中合成了球形Li2MnSiO4/C 复合正极材料,XRD、SEM和电化学性能测试对材料进行了表征。XRD测试表明Li2MnSiO4 具有正交结构,对应Pmn21空间群。SEM显示所得样品为小于1 μm的球形颗粒。将Li2MnSiO4/C 组装成扣式电池进行电化学测试的结果表明,在1.5~4.6 V,该样品的初始充电容量达310 mAh/g,放电容量高至 286 mAh/g,为理论比容量的85.9%;循环30 次后放电比容量为142 mAh/g。  相似文献   

5.
固相法合成锂离子电池正极材料Li2FeSiO4   总被引:3,自引:1,他引:2  
以SiO2、Li2CO3与FeC2O4·2H2O为原料,利用固相法制备出锂离子电池正极材料Li2FeSiO4,并通过X射线衍射,扫描电镜对材料的结构和形貌进行了分析.结果表明,制备出的Li2FeSiO4正极材料,粒度为300~400nm,颗粒分散均匀.在电压1.5~4.8V,室温下用0.1C倍率恒电电流进行充放电测试,Li2FeSiO4正极材料首次充电容量为297mAh/g,放电容量接近170mAh/g,具有良好的电化学性能.  相似文献   

6.
以Li2CO3、NiO、Co2O3、MnO2、LiF和SiO2为原料,采用机械力活化固相法制备了Si4+和F-掺杂的锂离子电池正极材料LiNi1/3Co 1/3Mn1/3O2.通过X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试等技术研究了LiNi1/3Co1/3Mn1/3O2的结构特征、形貌及电化学性能等.结...  相似文献   

7.
以乙酸盐为原料,采用喷雾干燥法制备层状α-NaFeO2结构的富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2及掺杂Cr的Li[Li0.2Ni0.15Cr0.1Mn0.55]O2。采用X射线衍射、扫描电镜、半电池充放电和电化学阻抗谱等方法研究材料的物相、结构、形貌及电化学性能。结果表明:Cr掺杂使材料的颗粒变粗,但不改变材料的结构,而使材料的层状特征更为明显;Cr掺杂后材料的电化学性能得到明显改善,电荷转移阻抗Rct从275.0降低到105.0,循环稳定性和倍率性能均有所改善,Li[Li0.2Ni0.15Cr0.1Mn0.55]O2材料1C倍率下的放电比容量为140.0 mA.h/g,循环50次后放电比容量为133.7 mA.h/g,远高于未掺杂Cr材料的比容量,未掺杂Cr材料在1C倍率下放电比容量为107.1mA.h/g,循环50次后放电比容量为102.1 mA.h/g。  相似文献   

8.
以Li2CO3、Mn2O3、Co2O3及LiF为原料,采用高温固相法合成了掺F的Li1.03Co0.10Mn1.90FzO4?z锂电池正极材料。通过离子发射光谱(ICP)和电位分析法确定了材料的化学组成,用X-射线衍射(XRD)、扫描电子显微镜(SEM)和电化学测试仪分析了 F 掺杂量对材料结构、形貌和电池性能的影响。结果表明,掺 F 的Li1.03Co0.10Mn1.90FzO4?z正极材料为尖晶石结构,在F掺入量z≤0.10时,随着掺杂量的增加晶胞参数逐渐增加,当F掺杂量继续增加时,晶胞参数的增幅有所减小。适量的F?与金属离子Li+、Co+的复合掺杂提高了材料的放电比容量,同时增强了材料结构的稳定性。电化学性能测试表明,Li1.03Co0.10Mn1.90F0.15O3.85的首次放电比容量达到111.0 mA·h/g,0.2C倍率下30次循环后容量保持率为97.0%。  相似文献   

9.
用溶胶-凝胶法制备Ti4+掺杂的Li2FeSiO4/C正极材料。用XRD、HRTEM和电化学方法研究了该材料的结构、形貌和电化学性能。结果表明,掺杂适量的Ti4+不会改变Li2FeSiO4/C的正交晶系结构,可以稳定材料的结构,改善高倍率充放电性能。在室温下,Li2Fe0.97Ti0.03SiO4/C以0.1c倍率放电的首次放电比容量为149.1mA·h/g,20次循环后放电比容量为127.3mA·h/g,且不同倍率下的电化学性能明显优于未掺杂的Li2FeSiO4/C。交流阻抗谱研究表明,适量的Ti4+掺杂,减小了正极材料在充放电过程中的电荷传递电阻,增加了材料的电子电导率,改善了材料的电化学性能。  相似文献   

10.
以Li OH·H2O,Fe SO4·7H2O,H3PO4、Ni SO4、Mn SO4为原料,采用水热法合成了Li Fe1-xNixPO4和Li Fe1-xMnxPO4。采用XRD、FESEM分析了正极材料的组成、结构及形貌,利用电池测试仪测试了正极材料的电化学性能。结果表明:镍、锰掺杂Li Fe PO4具有较好的充放电性能。Li Fe0.9Mn0.1PO4的首次充放电比容量分别为143.5、143 m Ah/g,Li Fe0.95Ni0.05PO4的首次充放电比容量分别为132、131 m Ah/g,离子掺杂能显著提高材料的充放电比容量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号