首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 采用MTS815岩石力学试验机对北山新场深部花岗岩进行三轴循环加、卸载试验,研究岩石强度参数的演化特征。基于Mohr-Coulomb相关理论推导与分析,探讨岩石发生屈服后的强度变化规律。在分析不同围压条件下岩石全应力–应变曲线的基础上,以塑性剪切应变为塑性参数,建立北山花岗岩黏聚力、内摩擦角和剪胀角随塑性参数变化的数学模型。研究结果表明:(1) 在损伤应力点,岩石塑性剪切应变接近于0,损伤应力可作为北山花岗岩塑性参数的零点,其亦可作为岩石强度参数演化的起点。(2) 在损伤应力点后,岩石黏聚力随塑性参数的增加呈指数函数形式衰减并最终趋近于0;内摩擦角随塑性参数的增加以对数正态函数的形式表现出先增加后减小的趋势,且岩石残余内摩擦角值与起始内摩擦角值接近。(3) 损伤应力后的岩石剪胀行为与峰后剪胀行为相似,剪胀角随着塑性参数和围压的增加而不断减小,且对低围压条件更为敏感。(4) 将建立的模型嵌入到数值模拟工具中,通过模拟岩石三轴压缩试验,可证实模型的准确合理性。  相似文献   

2.
为了研究开挖扰动对花岗岩的破坏机理,对北山花岗岩进行了加轴压卸围压的三轴试验,试验中设置0.1,0.5,1.0,1.5,2.0 MPa/min五种卸围压速率,轴压加载速率是卸载速率的10倍,每一种卸载速率设置5,10,15,20,30 MPa五个围压,并在试验过程中记录声发射事件。分析了声发射事件数随卸载速率的变化规律,使用层次聚类的方法将声发射事件分为张拉破坏和剪切破坏,研究了卸载速率、围压和卸载时间对张剪比(张拉破坏与剪切破坏的比值)的影响,研究表明:(1)随着卸载速率的增加,声发射事件数呈幂函数下降,且围压越高,声发射事件数下降越明显;(2)裂纹的张剪比随着卸载速率的增加而增加,随着围压的增加减小,随着卸载时间增加降低;(3)围压卸载速率增加,岩石声发射b值降低,初始围压升高,对应的b值增加,且卸载速率和围压对张拉b值的影响比对剪切b值影响更明显;(4)基于Maxwell模型分析岩石内局部应力状态,并进一步研究了岩石破坏过程中张剪比变化的力学机理。  相似文献   

3.
北山深部花岗岩弹塑性损伤模型研究   总被引:2,自引:1,他引:1  
 基于力学特性试验和三维声发射监测技术,研究北山花岗岩在压应力条件下的力学行为特征和损伤演化机制,并构建岩石的力学损伤模型。试验结果表明,在低围压条件下岩石主要发生的是脆性破坏;随围压增大,岩石力学行为逐渐向延性转化,表现出剪胀、塑性变形等非线性行为。结合微裂隙产生和扩展规律,对岩石在外力作用下的损伤演化过程和破坏机制进行分析,认为北山花岗岩的破坏及非线性行为是损伤和塑性变形共同作用的结果。基于这一认识,在热动力学框架下提出北山花岗岩准唯象弹塑性损伤模型。模型引入非关联的塑性流动方程,以反映岩石在压应力作用下体积变形从压缩到膨胀的转化过程。基于已有的损伤理论建立损伤演化方程,并通过在塑性屈服面中引入独立损伤变量,建立塑性和损伤发展的耦合关系。数值模拟和试验数据的对比表明,模型可以很好地描述北山花岗岩在不同应力水平下的损伤演化规律和力学行为,特别是随围压增大岩石力学行为从脆性到延性的转化过程以及岩石峰前塑性硬化和峰后应力软化等行为特征。  相似文献   

4.
基于岩石三轴压缩应力–应变全过程渗透特性试验,结合三维声发射监测信息,研究花岗岩在不同围压条件下力学损伤演化机制及其对岩石渗透特性影响规律。本研究对常规渗透试验方法进行改进,通过在试样两端加工渗透小孔,实现岩石不同破坏形式下渗透性变化规律的测量。试验结果表明,在压缩应力作用下,花岗岩的损伤演化始于微裂隙的产生和扩展,并在岩石破坏时和峰后阶段发展迅速。该损伤演化的阶段性特征与声发射监测数据一致,进一步说明了裂隙扩展是导致花岗岩力学特性劣化的根本原因。随着微裂隙的扩展,岩石渗透性不断增强,但在峰前加载阶段渗透性变化明显滞后于损伤演化过程。该结果表明,在裂隙贯通并产生宏观破坏面之前,裂隙扩展对花岗岩渗透性影响非常有限。在低围压条件下,岩石渗透性随围压增大迅速减小;当围压增大到一定程度后,该趋势逐渐减弱。结合声发射监测数据,对不同应力条件下损伤演化与渗透特性的相互关系进行分析,并提出花岗岩渗透率与损伤和围压的相关经验公式。  相似文献   

5.
 基于岩石三轴压缩应力–应变全过程渗透特性试验,结合三维声发射监测信息,研究花岗岩在不同围压条件下力学损伤演化机制及其对岩石渗透特性影响规律。本研究对常规渗透试验方法进行改进,通过在试样两端加工渗透小孔,实现岩石不同破坏形式下渗透性变化规律的测量。试验结果表明,在压缩应力作用下,花岗岩的损伤演化始于微裂隙的产生和扩展,并在岩石破坏时和峰后阶段发展迅速。该损伤演化的阶段性特征与声发射监测数据一致,进一步说明了裂隙扩展是导致花岗岩力学特性劣化的根本原因。随着微裂隙的扩展,岩石渗透性不断增强,但在峰前加载阶段渗透性变化明显滞后于损伤演化过程。该结果表明,在裂隙贯通并产生宏观破坏面之前,裂隙扩展对花岗岩渗透性影响非常有限。在低围压条件下,岩石渗透性随围压增大迅速减小;当围压增大到一定程度后,该趋势逐渐减弱。结合声发射监测数据,对不同应力条件下损伤演化与渗透特性的相互关系进行分析,并提出花岗岩渗透率与损伤和围压的相关经验公式。  相似文献   

6.
为深入研究花岗岩在卸荷路径作用下各变形阶段的应力特征值、变形参数和破裂前兆信息,选取甘肃北山花岗岩为研究对象,在不同初始围压下进行三轴卸荷试验。试验结果表明:(1) 随初始围压的增大,岩石特征应力值逐渐增大,受力模式由横向张拉作用转为张剪联合作用;(2) 弹性模量受初始围压大小的影响不大,泊松比随围压卸载而增大,弹性模量随围压的卸载而降低,均不是连续介质意义上的变形特征参数;(3) 在路径1作用下,因岩石侧向扩容剧烈,从而粘聚力较小;而路径2作用下岩石受张性破裂影响,导致破裂面粗糙,因此内摩擦角较高;(4)能量累计数随时间由缓慢增长转为加速增长的时间转折点可作为岩石在卸荷作用下出现宏观裂隙、导致完全破坏的监测参量。  相似文献   

7.
砂岩卸围压变形过程中渗透特性与声发射试验研究   总被引:3,自引:1,他引:2  
 利用岩石伺服试验系统,对江西红砂岩岩样进行气体渗透三轴试验及声发射监测,研究在常规加载、峰前卸围压和峰后卸围压3种应力路径下,岩样变形破坏过程中的渗透规律和声发射特征。试验结果表明:(1) 随着有效围压的增大,岩石岩样的应力峰值逐渐增大,岩样的应力峰值对有效围压很敏感。(2) 常规加载时,渗透率在岩石屈服前呈现略微下降的趋势,屈服后迅速增长,峰后应变软化阶段有小幅回落;峰前和峰后卸围压时,在卸载之前渗透规律与常规加载时相同,卸载后渗透率均呈急剧增长的趋势,增幅也较大,其中峰前卸围压后渗透率增幅最大。(3) 在相同加载方式下,围压的增大不影响渗透率曲线的发展趋势,只影响渗透率在各阶段量值的大小。(4) 常规加载时,岩石声发射活动在屈服前比较平静,屈服后声发射活动非常活跃,峰后应变软化阶段声发射活动再次趋于平静;峰前卸围压不久后,声发射活动异常活跃、密集,能量数相对值较大并有明显峰值;峰后卸围压过程与常规加载过程中声发射规律相似。(5) 岩样的破坏过程中,随围压增大,脆性减弱、延性增强,在同一围压水平下,峰前卸围压破碎程度最高,脆性最强。(6) 岩石扩容点与渗透率最小值所对应的轴向应变值十分接近,体应变和渗透率随轴向应变的变化趋势对应较好,声发射活动的密集阶段均发生在体积膨胀之后,渗透率、声发射、应力及(体)应变之间存在一定对应关系。  相似文献   

8.
为研究北山花岗岩在不同围压下的力学特征和损伤演化机制,选用MTS815 Flex Test GT电液伺服岩石力学试验系统和PCI–2声发射系统开展三轴压缩声发射试验,建立基于声发射累计振铃计数率的三轴压缩下北山花岗岩损伤演化模型,分析其损伤特性和损伤演化规律。研究结果表明:(1)北山花岗岩在常规三轴压缩条件下,力学、声发射参数均表现出明显的围压效应,适当提高初始围压,是促进原生裂隙快速闭合、阻碍新生裂隙形成发展的有效途径;(2)通过对应力–时间–声发射参数曲线分析可知,声发射振铃计数率的不同时段、能量累计数的5个阶段与岩石受压变形的5个阶段有着良好的对应关系;(3)将损伤演化过程划分为损伤形成阶段、损伤稳定增长阶段、损伤加速增长阶段和损伤破坏阶段,可合理地反应北山花岗岩在不同围压、不同破裂阶段的变形和破坏特征。  相似文献   

9.
为认识二长花岗岩在不同受载路径条件下破坏过程中声发射特征,通过三轴循环加卸载压缩试验和声发射试验,分析了玲珑金矿二长花岗破坏过程应力应变曲线和声发射特征参数的关系,结果表明:(1)在花岗岩的循环加卸载过程中,声发射信号主要出现在加载期的超过前一循环最大值的阶段和卸载过程的初期,弹性加载和卸载阶段后期基本无声发射现象;(2)岩石声发射活动与岩石变形破坏过程以及能量释放特征规律密切相关,在对二长花岗岩的加卸载试验的过程中,随着加卸载的进行,存在着声发射活动的活跃期和相对平静期;(3)主破裂阶段及峰后相对应力较高的时期所释放的能量要远高于卸荷阶段的初期、塑性变形的中后期这两个活跃期释放的能量,该阶段绝大部分的弹性应变能释放出来;(4)在岩石试样初期的循环加卸载过程中,岩石内部塑性破坏程度较低,Kaiser效应显著,后期的循环加卸载过程中即塑性阶段的中后期,Felicity效应显著;(5)岩石进入塑性变形的中后期,微破裂发展至破坏阶段,裂纹大量扩展、贯穿,形成宏观裂缝,弹性应变能大量释放,AE信号强烈,当达到塑性中后期的标志点时,岩石试件即到了主破裂的前夕。  相似文献   

10.
为探讨岩石损伤破坏过程中能量耗散过程与剪胀变形间的关系,以南疆某水电站引水隧洞片麻状花岗岩为研究对象,设计并开展岩石不同围压下(0~50 MPa)遍布全过程应力–应变曲线的递增循环加卸载三轴试验。取得的主要研究成果有:(1)从能量耗散观点定义损伤变量,对循环载荷施加过程中的能量耗散参数、主应变与损伤变量之间的关系进行深入地分析,探讨围压对各个参数和变量的影响规律;(2)基于试验曲线获取不同围压下每级载荷下残余体应变(塑性体应变)与轴向残余应变之间曲线关系,为研究其剪胀特性提供了数据基础;(3)根据岩石损伤演化与残余剪应变(塑性剪应变)之间的函数关系,从而得到能量耗散率与剪胀角间的变化规律。研究表明,开展基于能量耗散机制的岩石损伤与剪胀演化规律研究为岩体破坏过程中的能量机制与膨胀扩容特性研究之间架起了桥梁。  相似文献   

11.
采用MTS815 Flex Test GT岩石力学试验系统及声发射(AE)三维定位实时监测系统,开展北山深部花岗岩不同应力条件下岩石破坏的声发射特征研究。试验得到北山花岗岩的直接拉伸强度为9.53 MPa,仅为其单轴平均抗压强度的1/17。试验结果表明,在拉伸应力条件下,由于无原生微裂隙闭合过程,声发射事件出现时间较晚并集中出现于破坏阶段;峰值应力后,声发射信号的继续增加说明花岗岩并未立刻破断,而仍具有一定拉伸承载能力。在压缩应力条件下,初期加载阶段即有声发射信号出现并随加载应力增加而持续增长,反映原生裂纹闭合及新生裂纹扩展演化的过程;随着围压增加,花岗岩在峰值应力阶段延性变形特征显著增强,其内部裂隙(损伤)在该阶段渐进式发展,导致声发射事件的集聚量远高于其他阶段;同时,围压增加使北山花岗岩的非线性特征增强,特别是破坏前的显著延性变形特征与其他工程常见花岗岩特性具有明显不同。研究得到北山花岗岩在不同应力状态下的变形特征和声发射特征,为北山花岗岩在不同应力条件下损伤演化机制研究奠定基础。  相似文献   

12.
深部围岩在开挖卸载过程中表现出的峰后复杂力学特性一直是工程界十分关注的问题,深入研究岩石峰后力学行为对深部资源开采工程具有重要意义。以深部立井马头门工程为依托,通过室内试验方法研究花岗岩峰后力学特性,采用非线性拟合方法获得花岗岩峰后软化模量与围压的指数关系式,假定岩石的剪胀角为恒定值,基于塑性理论构建考虑围压及剪胀角影响的岩石峰后应变软化模型;以FLAC3D为平台开发数学模型并进行验证,通过构建马头门巷道数值模型,分析深部围岩在应变软化条件下的破坏特征规律。通过研究可知,花岗岩峰后破坏具有脆–延性转化趋势,在高围压条件下,岩石峰后表现出塑性软化破坏特征,岩石峰后软化模量随着围压的增大而减小;通过FLAC3D进行数值验证可知,构建的应变软化模型与试验数据基本吻合,所建立的应变软化模型具有较高的可靠性;通过数值模拟方法分析深部马头门巷道围岩破坏特征可知,巷道拱顶及拱脚等局部区域出现了塑性剪切应变,与现场巷道围岩破损位置及深度基本相同。  相似文献   

13.
为了实现对中密砂工程受荷变形的准确预测,基于岩土材料宏观弹塑性理论框架和三轴试验结果,分析中密砂变形、强度的影响因素和特征,建立适应的屈服准则、硬化法则和流动法则。研究结果表明:(1)中密砂的三轴力学特征对围压较为敏感,随围压增大,应力–应变曲线形态逐渐变化,线性段斜率和峰值强度增大,软化段减弱并消失,体积应变–轴向应变曲线线性段斜率基本无变化,体积剪胀程度减小,高围压试验结束时体积应变相对初始加载时仍处于剪缩状态;(2)考虑中密砂的围压效应和剪切破坏,采用第三主应力和等效塑性剪应变增量表达塑性内变量,峰值点处塑性内变量大于0.5,相对岩石更为滞后;(3)弹性模量随围压呈指数型函数规律增大,泊松比近似为常数;(4)塑性变形过程中最大主应力和最小主应力近似符合线性规律,内摩擦角近似线性增大,黏聚力先增大后减小并符合指数类函数特征;(5)剪胀角在低围压下随塑性变形逐渐减小,高围压下先增大后减小,高围压下剪胀角低于低围压;(6)数值曲线与试验数据吻合度高,可表达中密砂围压效应和塑性演化机制,适用于对应力状态敏感的中密砂的精确计算。  相似文献   

14.
利用MTS 815岩石力学测试系统对膏岩进行不同围压下的三轴压缩试验,配合AE系统进行全过程声发射监测,展开了膏岩变形破坏过程的力学特性及声发射特征进行研究,并进一步探讨膏岩变形破坏过程损伤演化规律。试验结果表明:(1)膏岩是一种致密低渗岩石,气体孔隙度在1.30%~3.50%之间;(2)三轴加载条件下,膏岩的力学性质与声发射参数对围压的响应效果强烈,50 MPa围压较5 MPa围压下膏岩强度提高110.67%。高围压下声发射信号表现出明显的“滞后”效应,声发射集中分布区不断向后推移;(3)膏岩的临界围压为20 MPa。低围压下膏岩呈脆性破坏,破坏后形成宏观剪切面;临界围压下呈塑性破坏,破坏后形成共轭Y型剪切;高围压下呈延性破坏,破坏形态为鼓胀破坏;(4)膏岩损伤演化过程可分为初始损伤期、损伤快速发展阶期与损伤平稳期,能够与膏岩变形破坏阶段对应;损伤快速发展期为膏岩内部裂隙发展、贯通的主要阶段。  相似文献   

15.
根据建立的岩石剪胀角模型,分析岩石峰值内摩擦角和剪胀角的关系,得出岩石在零围压时的峰值剪胀角小于并近似等于峰值内摩擦角,并假设岩石和岩体的剪胀角遵循相似的变化趋势,结合Hoek-Brown强度准则和GSI岩体分级系统,实现剪胀角模型从完整岩石到岩体的转化。采用程序语言在FLAC3D中编写岩体剪胀角模型程序模块。以加拿大Donkin-Morien隧道为工程实例,研究围压和塑性剪切应变依赖的岩体剪胀对隧道渐进开挖过程中围岩位移的影响,论证恒定的剪胀角值不能准确表达隧道开挖边界附近的岩体位移,而考虑围压和塑性剪切应变为影响因素的岩体剪胀角模型能够合理描述围岩的位移分布,模拟结果与实际测量值具有很好的一致性。研究成果可为岩体非线性力学行为的研究和地下工程岩体的稳定性控制提供理论和实践基础。  相似文献   

16.
砂岩高应力峰前卸围压试验研究   总被引:4,自引:1,他引:3  
 对采自重庆鱼嘴的砂岩开展若干围压(最小10 MPa、最大130 MPa)的保持轴压不变峰前卸围压试验,并与同围压下的常规三轴压缩试验结果进行对比分析,研究砂岩卸荷过程中的变形特征、破坏形态、峰值强度与残余强度特性及其扩容参数演化特征。主要研究成果为:(1) 加载路径下,围压增至130 MPa时,应力–应变曲线不出现应力降,可以认为围压130 MPa为砂岩脆–延转化压力。(2) 加载破坏时,偏应力峰值前扩容量相对于峰后较小,但卸荷破坏偏应力峰值前则表现出较大的扩容量。(3) 相同初始应力条件下,卸荷破坏时偏应力变化量比加载破坏时大,证明卸荷应力路径更容易引起砂岩试样的破坏。(4) 相同围压下,卸荷破坏的破裂角大于加载破坏。(5) 卸荷条件下得出的抗剪强度参数c比加载条件下低1.2%,?值则高4.8%;不论卸荷还是加载,残余变形阶段c值都大大减小,?值则变化不大。(6) 围压对扩容的约束作用较显著,围压越大,剪胀角极值越小;卸荷开始后,剪胀角呈剧烈增加态势,迅速达到极值;剪胀角峰值与偏应力峰值不同步,前者滞后于后者;卸荷破坏剪胀角峰值比加载破坏剪胀角峰值大,且达到峰值经历的塑性剪切应变量相对较小,证明卸荷破坏的剪胀性更加显著。这些结论可揭示高应力条件下砂岩的卸荷力学特性,为西部深埋引水隧洞的开挖、支护设计及其稳定性分析提供理论参考。  相似文献   

17.
基于梯度塑性理论的岩样单轴压缩扩容分析   总被引:8,自引:3,他引:8  
采用梯度塑性理论,对岩样剪应变局部化引起的扩容进行了理论分析。假设岩石的剪切本构关系为弹性-应变软化双线性,局部化启动于应力峰值强度,利用局部塑性剪应变与局部塑性体积应变的线性关系,得到了局部塑性体积应变、局部塑性体积增量及剪胀引起的剪切带总塑性体积增量的解析式,这体现了该理论在研究剪胀问题时的优越性。另外,还得到了弹性阶段及应变软化阶段的轴向应力-体积应变曲线的理论关系。塑性体积应变是专指由剪切带剪胀而引起的,因而,轴向应力.体积应变不具有尺寸效应,与局部化带的尺寸无关,但扩容角、剪切降模量及泊松比却对该曲线有重要影响。在弹性阶段及应变软化阶段轴向应力-体积应变均呈线性。在相同的应力水平下,扩容角越大则剪胀程度越大;剪切降模量越大,剪胀程度越小。在应变软化阶段,泊松比不影响塑性体积应变。  相似文献   

18.
岩石剪胀角模型与验证   总被引:4,自引:2,他引:2  
Mohr-Coulomb模型和基于Mohr-Coulomb的应变软化模型均通常假设剪胀角为恒定值,然而这种假设不能正确表达岩石在破坏变形过程中的非线性体积变化行为。根据7种岩石类型在不同围压条件下的体积应变测量数据,结合塑性力学理论,采用非线性拟合方法建立能同时考虑围压和塑性剪切应变影响的剪胀角模型。分析模型的响应并结合岩石内部颗粒尺寸以及单轴抗压强度,将该模型划分为4种岩石类型:粗粒径硬岩、中粒径硬岩、中–细粒径软岩和细粒径软岩。根据FLAC应变软化模型中非关联塑性流动法则的计算原理,推导剪胀角模型中的塑性剪切应变与应变软化模型中塑性参数的关系,将剪胀角模型嵌入应变软化模型中,构建剪胀角模型模块。最后,采用建立的剪胀角模型预测Moura煤岩在三轴压缩条件下的体积应变–轴向应变关系曲线。研究结果表明,数值模拟与试验结果具有很好的一致性。  相似文献   

19.
 基于不同温度及应力状态下的蠕变特性试验,结合三维声发射实时监测信息,开展北山花岗岩的蠕变变形特性以及加载条件(温度、围压和应力状态)对其蠕变破坏过程的影响研究。试验结果表明,北山花岗岩的蠕变破坏包括初始蠕变阶段(瞬态蠕变)、稳定蠕变阶段和加速蠕变阶段三个阶段,在加速蠕变过程中裂纹迅速扩展和积聚是导致岩石最终破坏的主要原因。蠕变试验过程中,声发射累计数和岩石蠕变体积应变的演化趋势整体上具有一致性,但声发射信号对岩石变形破坏的敏感性更强。对试验数据综合对比分析显示,花岗岩蠕变破坏变形受围压的影响显著,围压越高,岩石蠕变破坏前所能承受的变形越大。温度和应力水平对蠕变破坏变形影响并不明显,但可以对蠕变速率造成影响,进而改变岩石的蠕变破坏时间。根据试验结果,在围压2,10,30 MPa条件下,北山花岗岩的蠕变破坏轴向应变平均值分别为0.34%,0.54%和0.71%。  相似文献   

20.
扩容现象是岩石变形破坏过程中的重要特征。基于MTS815 Flex Test GT岩石力学试验平台,采用室内三轴卸荷试验和塑性力学理论分析,揭示了大理岩在卸荷条件下的扩容特征及能量变化特征。结果表明,随着围压的增大,岩样的各特征应力随之增大,其扩容特征随之减弱;岩样的扩容参数——扩容指标以及剪胀角均具有围压效应,即扩容指标与围压呈良好的指数型分布,剪胀角与应力比呈线性分布;岩样的卸荷破坏过程中能量特征为初始时以可释放应变能为主到破坏时的耗散能为主,其间的转折点为初始损伤扩容点,同时卸荷条件下的特征能量值与围压具有良好的指数类型关系;在峰值点与残余点处,岩样的能量损伤值与剪胀角以及能量特征值与扩容指标均存在着较好的指数类型关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号