首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
结合气、液相流动控制方程组、内部一致经典成核理论、Gyarmathy液滴生长模型、液滴表面张力模型、k ω湍流模型及NIST真实气体模型,对自行设计的Laval喷管内天然气自发凝结流动过程进行数值模拟研究。结果表明,在Laval喷管扩张段内,随着过冷度的增大,将发生甲烷气体凝结成核及生长现象。对于固定出口马赫数的喷管,更低入口温度或更高入口压力将使凝结发生在更靠近喉部处,且液滴成核率最大值及气体湿度均更大;比热比值将随入口温度的降低或入口压力的升高而增大,导致压降及温降增大,较低的入口温度或较高入口压力将使出口温度或出口压力低于三相点,可能导致气体无法液化。随着压比的增大,喷管内产生了激波,且逐渐向入口方向移动;激波产生后液化环境随即被破坏,湿度立即变为0。喷管出口马赫数增大对液滴成核率影响较小,能促进液滴生长过程,但过大马赫数可能导致气体无法液化。喷管出口处气体未达到热力学平衡状态时,可在直管段内继续凝结,同时压缩波和摩擦效应将使得液滴气化。各入口条件下,甲烷气体在喷管出口处湿度均低于0.1,液化效率较低。  相似文献   

2.
基于欧拉-欧拉双流体模型,结合凝结相变理论建立气体自发凝结数值模型,对所设计Laval喷管内硫化氢气体的自发凝结特性进行模拟研究,分析入口压力、温度及背压对凝结过程的影响。结果表明:气体高速膨胀产生的低温效应使天然气中硫化氢气体发生自发成核及液滴生长现象,气相中硫化氢含量随之降低;增大入口压力或降低入口温度将使凝结发生位置前移,促使更多的硫化氢从气相中凝结出来,过低的入口压力或过高的入口温度将使硫化氢气体无法在喷管内完成自发成核过程。随着背压的升高,激波在喷管内产生并逐渐前移,激波的产生会破坏凝结所需冷凝环境,造成凝结液滴的再蒸发,应合理选择背压以避免激波对硫化氢气体凝结过程的影响。  相似文献   

3.
再循环腔进口位置对超音速分离器流场影响数值分析   总被引:2,自引:2,他引:0  
超音速分离器作为一种新型、高效的分离设备,具有传统分离方式和设备不可比拟的高效性和经济性。在相同的结构尺寸下,对传统超音速分离器与再循环超音速分离器进行了对比数值模拟。结果表明,在相同的出口压力下,再循环分离器的流场分布较传统分离器好,且能使激波远离喉部,扩大超音速流动的区域范围,有利于气液分离。同时,针对再循环腔不同进口位置对流场稳定性的影响进行了分析。结果表明,进口位置在Laval喷管出口时,流场稳定性较好,有利于提高分离性能。  相似文献   

4.
变压力梯度下钻井环空压力预测   总被引:5,自引:3,他引:2  
为准确掌握变压力梯度钻井环空温度和压力分布特性,基于井筒流体流动与传热理论,充分考虑分离器位置处流体"变质量"传热传质与循环流体物性参数随温度和压力的变化,建立了变压力梯度下钻井环空温度和压力预测模型,并应用双循环迭代算法对模型进行求解,开展了环空温度和压力分布数值模拟研究。研究结果表明:相比于常规钻井,变压力梯度钻井环空温度和压力分布曲线上均存在一个明显拐点,且拐点位置与分离器位置一致;由于具有低导热系数空心球的注入,变压力梯度钻井环空流体温度要低于常规钻井;分离器位置、分离效率、空心球注入体积分数和空心球密度等参数均对变压力梯度钻井环空压力分布有较大影响。  相似文献   

5.
 为了分析压力变化对旋风分离器内颗粒浓度分布的影响,利用Fluent6.1软件, 气相流场采用修正的雷诺应力模型, 颗粒相运动采用颗粒随机轨道模型, 对0.1~6.5Mpa压力下旋风分离器内气、固两相流流场进行了模拟。结果表明,在入口浓度一定条件下,随着压力的升高,器壁颗粒浓度渐呈螺旋状灰带分布,旋风分离器内旋流区域的颗粒浓度减小,旋风分离器分离能力增强。压力增加一方面使气体切向速度增加,颗粒所受离心力增加;另一方面,气体的湍流强度增大,颗粒的扩散作用增强。当压力超过3.0 MPa后,压力增加对切向速度影响不大,而颗粒扩散增加,旋风分离器内旋流区域颗粒浓度增加,对颗粒分离不利。旋风分离器的径向颗粒浓度分布可以用指数函数描述,其中颗粒的径向速度、颗粒的扩散系数和边壁的颗粒浓度是影响颗粒浓度分布的主要因素。旋风分离器粒级效率随压力的增加而增大,当压力超过3.0 MPa后,压力增加对粒级效率影响不大。  相似文献   

6.
入口结构的设计对旋流分离器内部流场以及其分离效率具有重要的影响,而入口管的下倾角度就是其中一个重要的影响因素。柱状旋流分离器的切向速度呈Rankine涡特征,由靠近壁面的准自由涡和轴心位置的准强制涡组成。入口管的下倾造成分离器等高度截面上最大切向速度值的减小,同时增加了分离器内部流场的不均匀性:切向速度最低点位置沿轴向发生摆动,不同下倾角度摆动的方向和幅度不同;涡核边界往入口管的对面方向发生了摆动,摆动幅度随下倾角度的增加而增大。入口管的下倾使分离器内部压力分布的对称性变差,压力分布的扭曲程度随下倾角度的增加而增大。  相似文献   

7.
螺旋分离器水流动特性的CFD模拟与PIV试验   总被引:2,自引:0,他引:2  
设计了一种新的螺旋分离器,采用CFD数值模拟技术对螺旋分离器的入口管段、螺旋分离段及出口管段内流体流动速度场及压力损失分布特性进行了分析,结合PIV流场测试试验对分离器的入口管段和出口管段内流体流动速度场进行了测量和对比分析。介绍了螺旋分离器油水分离的工作原理、结构参数及PIV实验流程。结果表明:该螺旋分离器螺旋导流效果明显,在螺旋分离段及出口管段内具有持续时间长、离心分离强的螺旋流分离流场;流体流过螺旋分离段后,在出口管段内可形成稳定的螺旋流场;通过对比分离器内入口管段及出口管段PIV试验速度测量值与数值模拟值,结果吻合良好,验证了模拟结果的可靠性;通过分离器的压力损耗分析,指出了螺旋分离器的主要压力损耗位置,设计工况下的分离器最大压力损耗不超过90 kPa。  相似文献   

8.
分离器的工作效果以液滴的携带率k_ж和包藏的气泡率k_г来鉴定,并按下列的关系式计算: k_ж=q_ж/Vг;kг=q_г/Q_ж式中:q_ж和q_г——分别表示携出分离器范围(属于分离条件)的液滴和气泡的体积流量; V_г和Q_ж——分别表示在分离器条件下的气体和液体的体积流量。根据滞留在分离器里的液滴最小直径、自由截面或分离器捕雾段中气流平均流速的最大允许值以及为使自由气体从液体中分离出来而让液相在分离器中停留的时间来评价分离器的质量。气体携液量k_ж不应大于每1000m~3气体携液50cm~3,而分离器中  相似文献   

9.
水平井蒸汽吞吐热采过程中水平段加热范围计算模型   总被引:24,自引:2,他引:22  
对于稠油水平井的产能评价和动态预测,注蒸汽吞吐生产过程中水平段的加热范围至关重要。由于油藏中水平井水平段长度比直井中直井段长得多,蒸汽的压力、温度和干度沿着水平段分布不均匀;根据水平井变质量流的思想,用动量定理和能量守恒定理建立蒸汽沿水平段的压力、温度和干度分布计算模型;同时根据传热学等有关学科知识,考虑水平井中水平段加热过程和机理不同于直井的加热过程和机理,建立了水平井注蒸汽吞吐加热范围计算模型。根据辽河油田冷42块油藏基本参数,用所建立的模型对水平段加热范围进行了计算,对计算结果进行的研究表明:蒸汽压力、温度、干度、加热范围沿水平段不是均匀分布的,第一临界时间、第二临界时间的概念反映了蒸汽在油层的运移过程。  相似文献   

10.
吴晗  吴晓东  王庆  朱明  方越 《石油学报》2011,32(4):722-727
针对CO2 笼统注入过程中效率低、效果差等问题,提出了同心双管分注CO2技术。根据热量传递原理和流体流动理论,建立了考虑CO2相态变化的同心双管井筒流动与传热的数学模型,利用该模型研究了CO2沿内外管环空和内油管的温度和压力分布规律,分析了井口注入量、注入温度、注入压力、内外管组合、注入层间距对CO2在内外管环空和内油管中的流动压力和温度的影响。结果表明,在内外管井口注入参数相同的条件下,外管直径越大,内外管环空温度越高;当外油管直径不变时,内油管直径减小,内外管环空压力增加,内油管直径大小对内外管环空温度影响小;当内外管直径一定时,井口注入量、注入温度、注入层间距对内外管环空和内油管的温度、压力分布影响较大,而井口注入压力影响幅度较小。  相似文献   

11.
超声速旋流分离器内天然气液化过程研究   总被引:1,自引:0,他引:1  
目前关于超声速旋流分离器内天然气凝结液化过程的研究较少,为此,通过数值模拟计算对Laval喷管内气体凝结液化过程进行研究,并分析喷管结构对凝结液化的影响。研究结果表明,甲烷气体在喷管内发生了自发凝结现象,但凝结冲波现象并不明显,这与甲烷气体凝结过程液滴生长较慢且凝结潜热较小有关;随着喷管膨胀率的增大,气体过冷度增加越快,其能更早达到凝结液化条件(Wilson点);喷管内最大成核率、液滴数目及湿度(液化率)均随膨胀率的增大而增大,膨胀率从6 000 s-1增大到12 000 s-1,成核率最大值增加154.8%,液滴数目增加79.5%,喷管出口湿度增加51.7%,较大程度提高了液化率;对于扩张段长度固定的喷管,过大膨胀率将导致气体温度或压力低于三相点而无法液化;不同膨胀率及不同入口条件下液化率均较低,需进一步开展多级液化研究。  相似文献   

12.
为准确测量旋风分离器旋涡尾端的位置,采用筒锥式旋风分离器,通过红墨水示踪可视化地研究了分离器内流型,对轴、径向不同位置的压力信号进行了测量分析,并讨论了影响旋涡尾端位置的因素。结果表明,在分离器筒体及锥体段,静压沿径向呈V型分布,具有较大的梯度;而在料腿顶部区域,静压梯度急剧衰减,趋于平坦;这一特性可作为旋涡尾端的识别标志,由此识别的旋涡尾端位置与液体示踪显示的液环位置几乎一致。在筒体及锥体段,分离器内旋流压力信号具有一定的波动频率,而外旋流则没有明显的主频;在旋涡尾端碰壁处,壁面压力信号具有内旋流的波动频率,并有较高的幅值。旋风分离器旋涡尾端位置受入口气速的影响较小,但随着入口面积比的增加而上移,随排气管直径的增加而向下延伸。  相似文献   

13.
����ѹ��������㷽���о�   总被引:4,自引:0,他引:4  
动力压井法是一种非常规井控技术,在动力压井过程中利用井内或环空流体的流动阻力和静液压力来平衡喷井的地层压力,它已在压制强烈井喷中成功使用。文章介绍了确定动力压井所需流量的3种方法:在纯摩阻法计算模型中用单一流体计算流动压降;稳态两相模型表征稳态条件下的流体流动,并考虑两相流体在温度、压力变化条件下的压缩性;瞬态两相流动模型计算泵入压井液过程中两相邻时间段的井底压力变化。不断增加的静液压力与流动阻力加大了对地层的压力,分析与计算结果表明:两相流动模型优于单一流体的纯摩阻计算法。当压井管柱底端不在井底时,可以使用离井底动力压井法。在注入点处压井液液滴的沉降与液体回流是该方法压井成功的关键,因为它们能够增加对井底的有效压力。液滴的最大直径和牵引系数是判断沉降与回流的依据,最大液滴直径可据Weber数确定,而牵引系数是滑脱速度雷诺数的函数。压井液在上升天然气气流中碎裂成液滴是一个由空气动力学与流体力学所决定的复杂过程,尚需进一步研究以得出能更精确地确定离井底动力压井作业中液体回流的条件。  相似文献   

14.
结合液滴成核与生长模型,以及气、液流动控制方程建立了超声速凝结流动数学模型,对空气+水+乙醇三组分(双可凝)气体超声速流动条件下凝结特性进行了数值计算,研究了三组分气体超声速凝结特性影响因素,通过与空气+水双组分(单可凝)气体对比,分析了第二种可凝组分对凝结成核的影响,并开展了实验验证与对比分析。结果表明:随着三组分气体中乙醇含量的升高,Laval喷管内成核率、液滴数均增大,但成核区收窄,液滴生长区向前移动;在入口可凝气体为饱和状态下,升高入口温度与压力均能促进凝结的发生,使Wilson点向喉部移动,进而提高出口气体湿度;与双组分气体相比,三组分气体发生凝结的Wilson点更靠近喉部,出口湿度更大,说明三组分气体发生凝结时,两种可凝气体的凝结过程是相互促进的;Laval喷管沿程压力及Wilson点测试结果与数值计算结果吻合较好,说明所建立的数学模型具有较高的准确性。  相似文献   

15.
《石油机械》2021,(1):80-87
针对多梯度控压钻井过程中空心球分离效率低,无法实现多密度梯度的问题,设计了空心球过滤分离器。利用多孔介质模型、DPM模型以及冲蚀模型对分离器内部流场进行了数值计算。研究了注入速度和空心球直径对分离器腐蚀速率的影响,以及过滤过程中分离器内部在轴向上以及径向上的压力与速度分布规律。研究结果表明:空心球注入速度越小以及空心球直径越大,对工具的冲蚀磨损速率越低;过滤结构内入口层的中心压力高而外侧压力低,随着压力逐渐扩散,出口层外侧压力高而中心压力低,速度分布规律则相反;随着入口速度与油水比的增加,工具的压降逐渐增加,但是油水比的影响较小。该研究实现了多梯度控压钻井中空心球分离效率低的技术突破,显著提升了多梯度钻井方式实现的可行性,为窄压力窗口地层中井筒压力控制提供了技术支撑。  相似文献   

16.
采用三维激光粒子动态分析仪(PDA),测量并分析了聚异丁烯酰胺类清净剂质量分数、压力和轴向位置对0#车用柴油雾化液滴空间分布的影响。结果表明:随着清净剂质量分数增大,在喷嘴出口处柴油雾化形成的大液滴所占的比例逐渐降低,小液滴比例逐渐升高,添加清净剂的柴油雾化液滴在小粒径区的速度分布远高于未加剂柴油;随着压力的增加,无论是否加剂,柴油雾化液滴速度均增加,在高压范围内压力的持续增加对速度分布影响并不明显,但添加清净剂的柴油液滴停留在高速区的比例始终远高于未加剂柴油;随着轴向距离的增加,无论是否加剂,柴油雾炬液滴速度最终均出现明显衰减,液滴朝着低速、大粒径区间发展。  相似文献   

17.
天然气井采出的天然气通常含一定量的液体,这些液体不仅会堵塞管线、阀门,影响流量计计量的精确度,而且还会腐蚀设备、管道、仪表,易引起振动,破坏管道结构,严重影响集输生产管道寿命与安全,因此需尽快对采出液进行气液分离。为此,根据油气田现场采出液工况,设计了双入口气液分离器,并采用欧拉多相流模型,耦合标准k-ε湍流模型,对分离器内部的流场分布和分离特性开展了数值模拟研究。研究结果表明:(1)由于双入口的存在,分离器入口处湍流强度较小,流动较为平稳,能够增加入口气液混合液的分层程度,减少分离器下部发生折返的气体流量,进而减少气体出口带液量;(2)当入口液滴粒径大于0.1 mm时,仅有极少量的气体从液体出口流走,能够取得较好的分离效果;(3)随着分流比的减小,液体出口液体体积分数迅速增加,气体出口液体体积分数缓慢增加;(4)入口液体体积分数的变化主要影响分离后气体的纯度,对分离后液体的纯度影响较小。结论认为,在实际应用过程中,对于液滴粒径较小的来液工况,无论入口液体体积分数如何变化,均应调节分流比小于入口液体体积分数,使其液位略高于液体出口,以提高气液分离的效果。  相似文献   

18.
为了解决注空心球双梯度钻井中分离器的分离效率不高的问题,对井筒压力的动态变化规律进行了研究。设计了能够对空心球实现高效分离的过滤分离器,并通过数值模拟与室内试验进行了验证,过滤分离器最高分离效率可以达到98.5%。建立了空心球分离进入环空时所产生的波动压力数学模型,结合该模型并考虑空心球的体积分数、钻井液排量、分离器位置以及机械钻速的动态变化,进一步建立了井筒压力动态变化的数学模型。基于钻井数据进行了算例计算和影响因素分析。研究结果表明:在分离器位置处,井筒压力分布存在明显拐点,而环空中钻井液密度分布存在突变;通过动态调节空心球体积分数和分离器位置等关键参数可以灵活调节环空中轻质钻井液的密度大小、液柱长度以及随钻井底压力的大小,从而实现对随钻井底压力的实时预测。研究结果可以为窄压力窗口条件下的安全钻进提供理论基础与技术支撑。  相似文献   

19.
对催化裂化(FCC)装置再生烟气在三级旋风分离器(三旋)入口及出口的粉尘浓度进行了分析,结合FCC装置新鲜剂、再生器平衡剂、三旋细粉的粒径分布,对比分析了3套FCC装置再生器一级、二级、三级旋风分离器分离效率对烟气粉尘浓度的影响。结果表明:当烟气轮机入口(即三旋出口)烟气中粉尘浓度超过设计要求时,特别是粉尘中粒径大于10μm的颗粒体积占比超过5%时,大颗粒粉尘浓度越高对烟气轮机运行的影响越大,容易出现烟气轮机振动值升高等问题。因此,建议控制再生烟气在全流程的粉尘浓度:在三旋入口的质量浓度不大于600 mg/m3;在三旋出口的质量浓度不大于150 mg/m3,其中粒径大于10μm的颗粒体积占比不大于5%。  相似文献   

20.
基于流体动力学理论,建立U形管道气液两相流模型,采用数值模拟法分析了缓蚀剂在管道内的分布规律,探究了管径、入口速度、缓蚀剂体积分数、液滴直径、黏度对缓蚀剂分布规律的影响。实验结果表明,由于重力因素,缓蚀剂在水平管道顶部的含率逐渐下降,在水平管道底部的含率逐渐增加;在弯管处天然气会产生二次流动现象,在二次漩涡与重力共同作用下使缓蚀剂在下弯管顶部含率逐渐增大,在上弯管顶部含率逐渐减小;当管径、入口速度、黏度越大,缓蚀剂体积分数、液滴直径越小时,缓蚀剂沿着管道轴向方向含率变化相对较小,在径向位置处管道顶部与管道底部含率差值较小,有利于缓蚀剂在管道中均匀分布;在实际工程中,应通过控制缓蚀剂体积分数调整缓蚀剂在输气管道中的分布状况,这种做法操作简单,而且成本低、效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号