首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In order to characterize a solid surface, the commonly used approach is to measure the advancing and receding contact angles, i.e., the contact angle hysteresis. However, often an estimate of the average wettability of the solid–liquid system is required, which involves both the dry and wetted states of the surface. In this work, we measured advancing and receding contact angles on six polymer surfaces (polystyrene, poly(ethylene terephthalate), poly(methyl methacrylate), polycarbonate, unplasticized poly(vinyl chloride), and poly(tetrafluoroethylene)) with water, ethylene glycol and formamide using the sessile drop and captive bubble methods. We observed a general disagreement between these two methods in the advancing and receding contact angles values and the average contact angle determined separately by each method, although the contact angle hysteresis range mostly agreed. Surface mobility, swelling or liquid penetration might explain this behaviour. However, we found that the 'cross' averages of the advancing and receding angles coincided. This finding suggests that the cross-averaged angle might be a meaningful contact angle for polymer–liquid systems. Hence, we recommend using both the sessile drop and captive bubble methods.  相似文献   

2.
Advancing and receding contact angle measurements on polymer surfaces can be performed using a number of different methods. Ballistic deposition is a new method for both rapidly and accurately measuring the receding contact angle of water. In the ballistic deposition method, a pulsed stream of 0.15-μL water droplets is impinged upon a surface. The water spreads across the surface and then coalesces into a single 1.8-μL drop. High-speed video imaging shows that, on most surfaces, the water retracts from previously wetted material, thereby forming receding contact angles that agree with the receding angles measured by the Wilhelmy plate technique. The ballistic deposition method measures the receding angle within one second after the water first contacts the surface. This rapid measurement enables the investigation of polymer surface properties that are not easily probed by other wettability measurement methods. For example, meaningful contact angles of water can be obtained on the water-soluble low-molecular-weight oxidized materials (LMWOM) formed by the corona and flame treatment of polypropylene (PP) films. Use of the ballistic deposition method allows for a characterization of the wetting properties and an estimation of the surface energy components of LMWOM itself. Both corona- and flame-generated LMWOM have significant contact angle hysteresis, almost all of which is accounted for by the non-dispersive (polar) component of the surface rather than by the dispersive component. Surface heterogeneity is thus associated primarily with the oxidized functionalities added to the PP by the corona and flame treatments.  相似文献   

3.
The phenomenon of hysteresis of contact angle is an important topic subject to a long time of argument.A simple hydrostatic model of sessile drops under the gravity in combination with an ideal surface roughness model is used to interpret the process of drop volume increase or decrease of a planar sessile drop and to shed light on the contact angle hysteresis and its relationship with the solid surface roughness. With this model, the advancing and receding contact angles are conceptually explained in terms of equilibrium contact angle and surface roughness only,without invoking the thermodynamic multiplicity. The model is found to be qualitatively consistent to experimental observations on contact angle hysteresis and it suggests a possible way to approach the hysteresis of three-dimensional sessile drops.  相似文献   

4.
In this paper, a method to measure the advancing and receding contact angles on individual colloidal spheres is described. For this purpose, the microspheres were attached to atomic force microscope cantilevers. Then the distance to which the microsphere jumps into its equilibrium position at the air-liquid interface of a drop or an air bubble was measured. From these distances the contact angles were calculated. To test the method, experiments were done with silanized silica spheres (4.1 μm in diameter). From the experiments with drops, an advancing contact angle of 101 ± 4° was determined. A receding contact angle of 101 ± 2° was calculated from the jump-in distance into a bubble. Both experimental techniques gave the same contact angle. In contrast, on similarly prepared planar silica surfaces, a clear hysteresis was measured with the sessile drop method; contact angles of 104.5 ± 1° and 93.8 ± 1° were determined for the advancing and receding contact angles, respectively.  相似文献   

5.
Effect of the coating method on the formation of superhydrophobic polydimethylsiloxane–urea copolymer (TPSC) surfaces, modified by the incorporation of hydrophobic fumed silica nanoparticles was investigated. Four different coating methods employed were: (i) layer-by-layer spin-coating of hydrophobic fumed silica dispersed in an organic solvent onto TPSC films, (ii) spin-coating of silica–polymer mixture onto a glass substrate, (iii) spray coating of silica/polymer mixture by an air-brush onto a glass substrate, and (iv) direct coating of silica–polymer mixture by a doctor blade onto a glass substrate. Influence of the coating method, composition of the polymer/silica mixture and the number of silica layers applied on the topography and wetting behavior of the surfaces were determined. Surfaces obtained were characterized by scanning electron microscopy (SEM), white light interferometry (WLI) and advancing and receding water contact angle measurements. It was demonstrated that superhydrophobic surfaces could be obtained by all methods. Surfaces obtained displayed hierarchical micro-nano structures and superhydrophobic behavior with static and advancing water contact angles well above 150° and fairly low contact angle hysteresis values.  相似文献   

6.
The poly(ethylene terephthalate), PET, film was exposed to atmospheric pressure plasma under various plasma processing parameters. The wettability of the PET film immediately after the exposure and after storage in air, which was determined by the sessile drop method, was strongly dependent on the plasma processing parameters. The contact angle hysteresis on the plasma-exposed PET film was examined by the Wilhelmy method. It was found that the hydrophobic recovery of the PET surface on storage after the plasma exposure was observed only for the advancing contact angle and that the receding angle remained almost the same. These experimental findings were explained on the basis of the calculation by Johnson and Dettre for the advancing and receding contact angles on model heterogeneous surfaces.  相似文献   

7.
Surface topography and surface chemistry heterogeneity are widely accepted as causes of contact angle hysteresis. Contact angle hysteresis occurs on essentially all industrial polymer films. Four unmodified and flame-treated biaxially oriented poly(propylene) (BOPP) films produced from the same poly(propylene) base resin, but differing in surface topography and orientation, were characterized by measurement of the advancing and receding contact angles of water and diiodomethane, by atomic force microscopy (AFM) and by x-ray photoelectron spectroscopy (XPS). Contact angle hysteresis was much larger on flame-treated samples than on untreated samples even though some of the untreated films have significantly different topography at the nanoscale.  相似文献   

8.
Contact angle relaxation was measured for captive air bubbles placed on solid surfaces of varying degrees of heterogeneity, roughness, and stability, in water. The experimental results indicate that both advancing and receding contact angles undergo slow relaxation in these water-air-solid systems, due to instabilities of the three-phase contact line region. It is shown that the advancing contact angle decreases and the receding contact angle increases for many systems over a period of a few hours. Also, examples of reverse progressions are reported. Additionally, in extreme cases, the contact angle oscillates down and up, over and over again, preventing the system from stabilization/equilibration. Four different mechanisms are proposed to explain the contact angle relaxation. These include (i) pinning of the three-phase contact line and its slow evolution; (ii) the formation of microdroplets on the solid surface and their coalescence with the base of the gas bubble, which causes dynamic behavior of the three-phase contact line; (iii) deformation of the solid surface and its effect on the apparent contact angle; and (iv) chemical instability of the solid.  相似文献   

9.
The water wettability of surfaces, whose surface conditions are comparable to those used in heat and mass transfer equipment, has been investigated experimentally and theoretically.In the first part, results of contact angle measurements for water on metal and non-metal surfaces are reported. With hydrophobic non-metal surfaces (e.g. Teflon) water forms large advancing and receding contact angles, and the contact angle hysteresis is small. Surface contamination is of minor influence. Hydrophilic metal surfaces (copper, nickel) are completely wetted by water only if the surfaces are extremely clean. Surface contamination reduces the wettability drastically. Under most industrial conditions advancing contact angles between 40° and 80°, and receding contact angles smaller than 20° can be expected, and the contact angle hysteresis is large. Corrosion can enhance the water wettability.In the second part, a thermodynamic analysis of the wetting of heterogeneous surfaces is presented. Equilibrium considerations for a model surface consisting of two components of different wettability provide the advancing and receding contact angles for a heterogeneous surface as a function of the equilibrium contact angles, surface fractions, and the distribution function of the two components. The advancing and receding contact angles as well as all the intermediate contact angles indicate metastable states of equilibrium of the system. The results of the model calculations give a physically based explanation for the characteristic wetting behaviour of industrial surfaces found experimentally.  相似文献   

10.
Coal specimens of different ranks were polished using silicon carbide abrasive papers (with a grit from #60 to #1200) and alumina powder of varying size (from 5 to 0.05 μm). The coal surface roughness and contamination (by alumina powder) were examined with both scanning electron microscopy and atomic force microscopy. The water advancing and receding contact angles were measured on such surfaces by varying the bubble size, using the captive-bubble technique. It was found that silicon carbide paper abraded all components of the coal surface, i.e. both organic and inorganic matter, to a similar depth. The roughness of the coal surface due to polishing with silicon carbide abrasive papers affected the contact angle hysteresis and the contact angle vs. bubble size relationship. Polishing of coal specimens with alumina powder reduced the microroughness of the coal surface but produced rough features at the macro level and caused mineral inclusions rising above the smooth organic matter. This phenomenon results from the heterogeneity of coal specimens consisting of minerals and macerals with different hardness values. The roughness at the macro level was easily distinguishable and had a significant impact on the measured contact angles when the coal surface was polished with coarse alumina powders, 5 and 1 μm in diameter. The effect of surface roughness on the advancing and receding water contact angles was significantly reduced (if not completely eliminated) when the coal surface was polished with a fibrous cloth (CHEMOMET) in the final step, after having been polished with 0.05 (0.06) μm alumina powder. Microscopic observation of the coal surfaces revealed that an appropriate ultrasonic treatment (8-10 min in an ultrasonic bath filled with water) and mechanical cleaning (polishing with a CHEMOMET cloth) of coal samples were required to remove the alumina particles left on the surface due to the previous polishing procedure. An improved methodology for coal surface preparation, prior to contact angle measurements, as proposed in this paper, includes polishing with a series of abrasive papers and 0.05 (0.06) μm alumina powder, polishing and cleaning with a fibrous cloth (e.g. CHEMOMET), and, finally, an extended cleaning in an ultrasonic bath filled with water.  相似文献   

11.
Hydrophobic solid surfaces with controlled roughness were prepared by coating glass slides with an amorphous fluoropolymer (Teflon® AF1600, DuPont) containing varying amounts of silica spheres (diameter 48?μm). Quasi-static advancing, θA, and receding, θR, contact angles were measured with the Wilhelmy technique. The contact angle hysteresis was significant but could be eliminated by subjecting the system to acoustic vibrations. Surface roughness affects all contact angles, but only the vibrated ones, θV, agree with the Wenzel equation. The contact angle obtained by averaging the cosines of θA and θR is a good approximation for θV, provided that roughness is not too large or the angles too small. Zisman's approach was employed to obtain the critical surface tension of wetting (CST) of the solid surfaces. The CST increases with roughness in accordance with Wenzel equation. Advancing, receding, and vibrated angles yield different results. The θA is known to be characteristic of the main hydrophobic component (the fluoropolymer). The θV is a better representation of the average wettability of the surface (including the presence of defects).  相似文献   

12.
Hydrophobic solid surfaces with controlled roughness were prepared by coating glass slides with an amorphous fluoropolymer (Teflon® AF1600, DuPont) containing varying amounts of silica spheres (diameter 48 μm). Quasi-static advancing, θA, and receding, θR, contact angles were measured with the Wilhelmy technique. The contact angle hysteresis was significant but could be eliminated by subjecting the system to acoustic vibrations. Surface roughness affects all contact angles, but only the vibrated ones, θV, agree with the Wenzel equation. The contact angle obtained by averaging the cosines of θA and θR is a good approximation for θV, provided that roughness is not too large or the angles too small. Zisman's approach was employed to obtain the critical surface tension of wetting (CST) of the solid surfaces. The CST increases with roughness in accordance with Wenzel equation. Advancing, receding, and vibrated angles yield different results. The θA is known to be characteristic of the main hydrophobic component (the fluoropolymer). The θV is a better representation of the average wettability of the surface (including the presence of defects).  相似文献   

13.
The inconsistencies in contact angle data presented in the literature can be attributed to a number of factors. The awareness of these factors would allow novice researchers to make meaningful contact angle measurements and interpretations. In this survey the effects of surface roughness and heterogeneity, surface preparation and the presence of contaminants, the vapor environment, pressure and temperature, drop size, electrical charge, and heat transfer on the wettability of polymer surfaces were examined.  相似文献   

14.
A method was developed to determine the initial peripheral contact angle of sessile drops on solid surfaces from the rate of drop evaporation for the case where 1 < 90°. The constant drop contact radius, the initial weight, and the weight decrease with time should be measured at the ambient temperature for this purpose. When water drops are considered, the relative humidity should also be known. The peripheral contact angle so obtained is regarded as the average of all the various contact angles existing along the circumference of the drop. Thus, each determination yields an average result not unduly influenced by irregularities at a given point on the surface. In addition, the error in personal judgment involved in drawing the tangent to the curved drop profile at the point of contact can be eliminated. The application of this method requires the use of the product of the vapor diffusion coefficient with the vapor pressure at the drop surface temperature. This product can be found experimentally by following the evaporation of fully spherical liquid drops.  相似文献   

15.
Hysteresis of the contact angle, i.e. the difference between the advancing and receding contact angles, is discussed in terms of the liquid film presence behind the drop when it has receded. It is shown that values of receding contact angles in many systems result from a well-defined free energy balance in the solid/liquid drop system. If a duplex film is present behind the drop, experimental receding contact angles up to 15° may be considered as lying in the range of the experimental error. In the case of low-energy solids (e.g. Teflon), it is possible to determine graphically the minimum value of the surface tension below which a liquid will leave a duplex film behind the drop when receding.  相似文献   

16.
By employing perturbation theory, first-order and second-order approximate solutions have been obtained for the analytically insoluble second-order differential equation describing the profile of an axisymmetric sessile drop. These solutions can be of practical value in the determination of contact angles (90°) from the diameter and height of sessile drops. The drops in question may be relatively large (eg for water, diameter up to about 15 mm) and thus the solutions may be considered as useful extensions of formulae for contact angle assuming drop sphericity.  相似文献   

17.
Examples of experimental contact angle data for varying drop and bubble volumes on different solids whose surfaces are smooth and homogeneous, rough and homogeneous, smooth and heterogeneous, and covered with unstable organic films are presented. The ideas and theoretical models as proposed in the literature for the interpretation of contact angle/drop (bubble) size relationships are critically reviewed. It is shown that major factors affecting the contact angle variation with drop (bubble) size such as surface heterogeneity, roughness, and stability, have been identified in the literature. However, there is still a need for experimental work with well-defined and well-characterized solid surfaces. Theoretical models that have been proposed in the literature are still inadequate. Advanced modeling of liquid behavior at heterogeneous and rough surfaces is required to understand further, and to predict, the contact angle/drop (bubble) size relationships at imperfect surfaces.  相似文献   

18.
Different experimental methods have been used to determine the static contact angle hysteresis of the system polytetrafluoroethylene/water and the results compared. While the Wilhelmy plate method is not influenced by methodical variations, contact angles determined by the sessile drop and the pendant bubble methods vary with the drop or bubble diameter up to a minimal diameter dK of the contact area with the solid. This condition seems to be a universal one and should always be checked to ensure that the measured values are comparable. Contact angles calculated from the geometrical parameters of a drop or bubble should be used with care. The surface energetic characters for the PTFE/water are δθ = 19.5°, θa, e = 108.5° and θr, e = 89°.  相似文献   

19.
Examples of experimental contact angle data for varying drop and bubble volumes on different solids whose surfaces are smooth and homogeneous, rough and homogeneous, smooth and heterogeneous, and covered with unstable organic films are presented. The ideas and theoretical models as proposed in the literature for the interpretation of contact angle/drop (bubble) size relationships are critically reviewed. It is shown that major factors affecting the contact angle variation with drop (bubble) size such as surface heterogeneity, roughness, and stability, have been identified in the literature. However, there is still a need for experimental work with well-defined and well-characterized solid surfaces. Theoretical models that have been proposed in the literature are still inadequate. Advanced modeling of liquid behavior at heterogeneous and rough surfaces is required to understand further, and to predict, the contact angle/drop (bubble) size relationships at imperfect surfaces.  相似文献   

20.
The structure and the properties of oriented polymer surfaces were studied for three series of uniaxially oriented films of polypropylene (PP), polystyrene (PS), and poly(ethylene terephthalate) (PET). The surface structure was characterized in terms of relative crystallinity and molecular orientation along with topology and roughness by using FT-IR-ATR dichroism technique, optical microscopy and surface profilometer. In all three polymers, the surface orientation function increases with draw ratio. The relative surface crystallinity and the trans con-former also increases for PP and PET, respectively. In uniaxially drawn PP, the surface becomes rough with increasing draw ratio and the roughness is anisotropic with peaks and valleys elongated along the draw direction. For drawn PP, the equilibrium contact angles for four different liquids all exhibit anisotropy with higher values in perpendicular direction than that in parallel to the draw direction. In contrast, both drawn PET and PS films show smooth surfaces, and the equilibrium contact angles were all isotropic. When roughness is removed from the drawn PP by polishing without altering the molecular orientation, the anisotropy becomes negligible and the contact angles approach the value for undrawn PP. When surface roughness was created deliberately on undrawn PET and PS films, the contact angle anisotropy was clearly observed. Therefore, the anisotropy in surface topology rather than the molecular orientation seems to play a dominant role in developing anisotropic wetting behavior. The equilibrium contact angles for smooth surfaces have been calculated using the experimentally obtained roughness and anisotropic contact angle data from the rough surface. These values are in reasonable agreement with the measured contact angles for smooth surfaces, suggesting that the observed contact angle anisotropy can be attributed entirely to the roughness anisotropy rather than to the molecular orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号