首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
为了达到较理想的压裂效果,现场施工会泵注携带支撑剂的压裂液进入地层,研究含砂压裂液的流变规律可以为压裂液在管道和裂缝中的携砂能力预测提供更加准确的理论依据。将压裂液和支撑剂看作整体进行流变实验,研究混合流体表观黏度随剪切速率变化的规律和机理。含砂压裂液流变实验结果显示,压裂液在加入支撑剂后,在一定剪切条件下黏度低于压裂液本身黏度,另外实验还观察到含砂压裂液表观黏度随剪切强度的变化呈现先降低后升高的“V”形趋势,这是由于固液混合流体的内部结构变化与支撑剂颗粒扰动共同作用的结果。含砂压裂液特有的流变行为同样受到支撑剂浓度、粒径和液体温度等因素的影响。强剪切条件下颗粒碰撞作用明显,含砂压裂液表观黏度随浓度增大而增大,弱剪切条件下,含砂压裂液由于支撑剂造成的附加剪切破坏,表观黏度随浓度增加会先下降后升高。并且含砂压裂液黏度与颗粒粒径以及流体温度呈现反相关关系。   相似文献   

2.
为改善支撑剂在裂缝中的铺置形态和提高压裂增产效果,采用实验模拟方法,应用可视化裂缝平板装置开展压裂液携砂实验,结合支撑剂颗粒的微观运动轨迹和砂堤的宏观形状,描述缝内砂堤的形成过程,分析黏性和非黏性压裂液携砂方式的区别,研究射孔孔眼间干扰、压裂液排量、压裂液黏度和施工砂比对缝内砂堤形态的影响规律。结果表明:支撑剂在裂缝中的运移是流化和沉积共同作用的结果,以流化拖拽和输送为主;黏性压裂液中流化层和砂堤之间可形成不流动的液体薄层,对颗粒具有托举作用,减小流体和颗粒间的摩擦和碰撞;砂堤的形成过程共经历砂堤形成、生长、平衡状态和活塞状推进4个阶段,在射孔孔眼干扰和液体冲蚀的共同影响下,形成的砂堤形态可由堆积角、平衡高度和前进角表征,裂缝内存在近井筒和缝高方向的无砂区;砂堤的平衡高度主要取决于支撑剂颗粒的运动速度,与施工排量和压裂液黏度成反比,与砂比成正比。该研究可为压裂施工参数优化提供参考。  相似文献   

3.
裂缝中支撑剂的运移和铺置是维持裂缝开放和增强裂缝导流能力的关键,但支撑剂在迂曲裂缝中的运移机理尚不明确。为此,基于计算流体力学原理,利用离散单元法建立支撑剂在迂曲裂缝中运移的数值模型,研究携砂液注入速度、压裂液砂比、支撑剂粒径等因素对迂曲裂缝中支撑剂运移铺置规律的影响。结果表明:裂缝迂曲度越大、支撑剂铺置距离越短,流速损失越大;在距裂缝入口20 mm处,与迂曲度为1.0的裂缝相比,迂曲度为1.2、1.5、2.0的裂缝中的流速损失率增大2.2、3.7、4.5倍;迂曲裂缝内支撑剂铺置距离随支撑剂注入速度的增大而增大,随压裂液砂比、支撑剂粒径的增大而缩短。该研究可为支撑剂在迂曲裂缝中运移的相关研究提供理论指导。  相似文献   

4.
压裂液的携砂性能优劣直接影响着支撑剂在裂缝中的输送铺置效果及压后裂缝的有效导流能力。研制了“XS-I型”压裂液悬砂及支撑剂沉降物理模拟实验装置;开展了3种陶粒支撑剂(70/140目、40/70目、30/50目)在SRFP-1型压裂液中的悬砂特性研究,分析了支撑剂在携砂液中的沉降量、沉降速率以及二者随沉降时间的变化规律,得出影响压裂液悬砂性能的主控因素。实验研究表明,携砂液中支撑剂沉降分为快速沉降、缓慢沉降、稳定平衡3个阶段。压裂液黏度是影响压裂液悬砂性能的最主要因素,其次是支撑剂粒径、携砂液砂比。低黏度压裂液仅对70/140目支撑剂有一定悬浮能力(支撑剂充分沉降时间10~20 min),对40/70目和30/50目的支撑剂悬浮性能较差(支撑剂充分沉降时间仅为1.0 min~5.5min),整体悬砂能力较差。中黏度压裂液对70/140目支撑剂悬浮效果好(仅有9.9%~11.1%的支撑剂沉降),在小于15%砂比下对40/70目及30/50目支撑剂有较好的悬浮能力(支撑剂充分沉降时间80 min~240 min)。中高黏度压裂液中,大粒径(30/50目)支撑剂在高砂比(25%~30%)条件下加入,也仅有12%~13.1%的支撑剂沉降,悬砂性能优,适宜作为主加砂阶段的携砂液。研究结果丰富了压裂液悬砂能力测试方法及支撑剂优选评价手段,为压裂液、压裂施工参数的优化及支撑剂的优选,提供基础数据依据。   相似文献   

5.
支撑剂运移是水力压裂体系中一个重要的流体-颗粒两相流问题.如何改善支撑剂在缝网中的铺置情况,是压裂改造后提高储层有效传导率的关键.针对这一问题,结合计算流体力学-离散元(CFD-DEM)方法,文中对支撑剂在交叉裂缝中的运移规律进行了数值模拟研究,主要分析了在不同裂缝交角和携砂液黏度条件下支撑剂的运移规律.结果表明:随着裂缝交角增大,支撑剂进入支缝的比例不断下降;提高携砂液黏度,能够改善支撑剂在支缝中的运移情况;在特殊条件下,支撑剂在狭窄支缝中可能出现空间非均匀性的聚团效应.利用CFD-DEM方法能够准确刻画颗粒与颗粒/壁面及流体与颗粒之间的相互作用.  相似文献   

6.
为了优化超临界CO2压裂工艺技术和施工参数,考虑超临界CO2压裂液中支撑剂颗粒之间相互作用,采用欧拉-拉格朗日方法中的多相质点网格方法,建立超临界CO2压裂缝内支撑剂运移数学模型,通过室内水力压裂支撑剂运移物模实验验证模型准确性,进行超临界CO2压裂缝内支撑剂运移规律计算和分析。研究表明:未增黏CO2由于黏度低,携砂效果极差,优化其他参数对携砂效果影响不大;CO2黏度增加到2.5 mPa·s即可有效提高携砂效果,采用超轻支撑剂与细尺寸颗粒组合,携砂效果与增黏到10 mPa·s效果相差不大;优化支撑剂密度比尺寸对携砂效果提高更为明显;增大排量可以提高携砂效果,但排量继续增大,其携砂效果变化较小;流体滤失对CO2携砂效果影响变化不大。该研究为解决CO2携砂性能差的问题提供了技术支撑,对超临界CO2压裂设计优化及现场施工具有重要指导意义。   相似文献   

7.
为了认识陆相页岩气储层裂缝中支撑剂的铺置规律,采用可视裂缝模拟系统开展支撑剂沉降铺置实验,模拟了不同压裂液黏度、排量、砂比、支撑剂粒径和支撑剂密度条件下支撑剂运移沉降的过程,同时采用PIV粒子测速技术绘制了砂堤入口处与前缘处的速度场,进一步分析了支撑剂铺置过程中颗粒的运动特征。研究结果表明,支撑剂在人工裂缝中的铺置分为四个阶段:早期阶段、中前期阶段、中后期阶段和平衡状态阶段。裂缝入口处:悬浮颗粒的速度方向近似水平向前,砂堤表面颗粒速度沿着坡面向上,支撑剂的推进主要依靠液体黏滞力的携带作用;排量增大,流场出现明显的扰动现象,排量越大,扰动程度越大。砂堤前缘处:坡顶处流场存在明显的涡流现象;液体黏度增加,涡流强度减弱,黏滞力增加,颗粒在液体冲击和携带作用下,铺置更远的距离;排量增加,整个前缘区域出现更大的旋涡,涡流作用更加强烈,此时液体的冲击作用使得支撑剂铺置效果更好;砂比增加,旋涡数量增加,强度增强,波及范围增大,支撑剂运移到裂缝更远端。滑溜水中支撑剂粒径越小、密度越大,砂堤越均匀,但要达到铺置效果,需要携砂液的作用。   相似文献   

8.
清洁压裂液中支撑剂的运移和铺置对压裂效果有重要影响,目前对这方面基于理论研究和矿场试验的较多,而室内实验研究较少。利用透明平行板裂缝充填模拟装置,对4个影响支撑剂沉降规律的因素进行了研究。结果表明:黏度越大,沉降速度越小;压裂液携砂性能随排量的增加、支撑剂密度的减小呈线性规律增长;砂液比对沉降速度影响较小;其中3个主因素对压裂液携砂能力的影响程度从大到小依次为清洁压裂液黏度、支撑剂密度和砂液比。认清支撑剂沉降规律可进一步提高压裂井施工参数的合理性。  相似文献   

9.
基于分形插值理论建立了具有粗糙壁面裂缝的生成方法,同时考虑颗粒-颗粒、颗粒-壁面、颗粒-流体的相互作用,建立了基于计算流体力学(CFD)-离散单元法(DEM)耦合的支撑剂-压裂液两相流动模型。经实验数据的检验,证实该模型可以较好地匹配粗糙裂缝内支撑剂的运移情况及堆积过程。经多个方案的数值模拟研究表明:与光滑平板裂缝相比,支撑剂在粗糙裂缝内输送,壁面粗糙凸起会显著影响支撑剂的运移与沉降,裂缝模型的粗糙程度越高,裂缝入口附近的支撑剂颗粒沉降速度越快,其水平运移距离越短,越倾向于在裂缝入口附近堆积,并在较短时间内形成缝内砂堵。裂缝壁面粗糙度在一定程度上可控制流体的运移路径,改变支撑剂填充裂缝的方式,一方面粗糙壁面凸起抬升了支撑剂运移轨迹,使支撑剂流出裂缝,导致覆盖率减小;另一方面携砂液易在粗糙壁面凸起接触点附近发生转向流动,可在一定程度上扩大支撑剂覆盖范围。  相似文献   

10.
为了研究压裂和返排过程中支撑剂在裂缝中的运移、沉降和回流规律,自主研制了“YF-1”型压裂输砂和返排一体化模拟实验装置,在模拟储层温度、闭合应力和滤失情况下,开展了不同裂缝宽度、压裂液黏度、支撑剂类型、排量和出砂临界流速等因素在输砂和返排过程中对砂堤剖面的影响实验。实验结果表明:输砂和返排过程中,液体黏度是影响砂堤剖面的最主要因素,其次是支撑剂粒径和排量,裂缝宽度对砂堤剖面的影响最小;在返排过程中,液体黏度越小,出砂临界流速越大;缝宽和支撑剂粒径越大,出砂临界流速越大,在压裂后放喷时,应保证压裂液完全破胶,避免出砂。研究结果为压裂液优选、压裂施工参数优化、支撑剂优选及压裂后返排制度的制订提供了依据。  相似文献   

11.
稠化剂浓度的降低会导致压裂液的携砂性能变差,进而影响压裂改造效果。而基液中加入纤维可以在降低压裂液中稠化剂浓度的前提下,保证甚至提高压裂液的携砂能力。静态携砂实验结果表明,随着纤维加量和纤维长度的增加,支撑剂的沉降速度降低。加入质量分数大于0.2%、长度大于8 mm的XW-3纤维即可有效改善压裂液的携砂能力,并且纤维对压裂液的耐温耐剪切性能没有影响。在变剪切实验中,随着纤维加量从0增至2.0%,黏度增值由335.9降为107.4 mPa.s。加入纤维后,剪切速率的降低对压裂液黏度升高的影响变小。含有纤维的压裂液中,支撑剂的沉降遵循Kynch定律。在长庆油田关X井的现场应用证实了纤维改善压裂液携砂能力的可行性。  相似文献   

12.
水力压裂是油气藏增产的一项重要技术手段,其目的是在地层内形成一条高导流能力的填砂裂缝,支撑剂在裂缝中沉降所形成的砂堤形态决定着压裂增产效果。针对中国理论研究较多但实验研究缺乏的现状,利用大型可视裂缝模拟装置进行支撑剂沉降模拟实验,通过对比分析砂堤形态以及支撑剂颗粒的沉降速度与水平运移速度,对现场常用的滑溜水、线性胶、纤维和交联4种压裂液进行携砂性能评价。结果表明:滑溜水压裂液形成的砂堤短而高,其携砂性能最差;交联压裂液形成的砂堤长而低,且最平缓,携砂性能最好;线性胶压裂液与纤维压裂液携砂性能介于两者之间;支撑剂颗粒在4种压裂液中的水平运移速度分别占液体流速的78%,85%,91%和95%,沉降速度由高到低分别为滑溜水压裂液、线性胶压裂液、纤维压裂液和交联压裂液。因此现场应根据储层的实际情况以及所需裂缝的类型选择合适的压裂液。  相似文献   

13.
携砂液在径向井中流动会产生较大摩阻损失。通过自主设计的"径向井摩阻测试装置"对压裂液黏度、支撑剂粒径、砂比、排量、井径等影响因素进行摩阻实验。结果表明,压裂液黏度的最优取值为150~200 mPa·s(地层条件下),扩大径向井井眼尺寸、降低排量、增大支撑荆粒径均利于减小摩阻,同时摩阻对砂比敏感性小可尽量提高砂比利于压裂效果。通过灰色关联分析法得到其影响因素大小依次为:排量,砂比,支撑剂粒径,压裂液黏度,井径。  相似文献   

14.
滑溜水压裂技术以大排量、大液量的方式向地层泵注携砂液,最终可以在压裂储层中形成填充有支撑剂的有效人工裂缝。通过对支撑剂颗粒进行受力分析,建立其沉降的速度公式,并结合固液两相流的运动机理,建立了支撑剂输送的数学模型。基于现有装置,研究了不同进口位置组合对滑溜水压裂液携砂运移规律的影响,并利用Fluent软件的欧拉模型对铺砂形态进行数值模拟。结果表明:Ⅰ-Ⅱ型进口组合最有利于主缝进口端的铺砂,支撑剂铺置率高,且砂堤平衡高度前缘距离较小。实验与模拟结果的吻合度高,可为压裂施工提供理论帮助。  相似文献   

15.
为了解水力压裂过程中水力裂缝内支撑剂的铺置规律,基于平板裂缝开展了支撑剂输送试验,分析了泵注排量、压裂液黏度、注入位置、支撑剂类型对支撑剂铺置过程的影响;运用PIV/PTV技术,测试了压裂液–支撑剂两相运动速度,从颗粒运动角度分析了不同因素对最终砂堤形态的影响。试验发现:平板单缝内支撑剂铺置存在“裂缝前端先堆积至平衡高度,再稳定向后端铺置”和“砂堤整体纵向增长,稳定向后端铺置”2种典型模式,2种模式可以在泵注的不同阶段出现并转换;砂堤不同位置形态主控因素存在差异,注入位置与排量主要控制前缘形态,黏度与排量主要控制中部形态,黏度主要控制后缘形态;在裂缝远端,支撑剂沉降存在“回流式”和“直接式”2种模式,前者受涡流控制,后者则仅依靠重力沉降;现场施工时可考虑“定向射孔+大排量中高黏70/140目石英砂(主体支撑剂)+40/70目陶粒架桥+大排量中高黏70/140目石英砂长距离输送+排量尾追40/70目陶粒”,兼顾缝长方向远距离铺置和近井地带裂缝与井筒的高连通性。平板裂缝内支撑剂运移与铺置规律试验结果可以为页岩储层压裂主裂缝内支撑剂高效铺置及储层改造工艺参数优化提供参考。  相似文献   

16.
支撑剂在水力裂缝中的分布是影响压裂井产能的重要因素。通过对任意长度、孔隙度、迂曲度和方位角微裂缝的二维重构,利用COMSOL Multiphysics中的自由与多孔介质流动耦合模型,对压裂液在微裂缝中流动及向基质中滤失的情况进行模拟,在考虑支撑剂与压裂液相互作用的基础上,分析了支撑剂颗粒在输送过程中的受力情况,研究了不同砂比和支撑剂密度的情况下,支撑剂在迂曲微裂缝中的分布。研究结果表明,与规则裂缝相比,由于迂曲微裂缝壁面不规则,支撑剂不会均匀推进;在高砂比情况下,支撑剂大部分堆积在迂曲裂缝端部,无法有效支撑深部裂缝;降低砂比可以有效改善单条裂缝的支撑剂分布;不同砂比和支撑剂密度的组合可以改善相交裂缝的支撑剂分布,但是对于单条裂缝的作用不明显。  相似文献   

17.
采用可视化平行板裂缝物理模拟实验装置,开展了不同粒径支撑剂在不同黏度压裂液、变排量下的动态携砂实验,模拟现场施工排量下支撑剂铺置的规律与支撑剖面。利用API裂缝导流设备和岩心驱替装置,开展主裂缝和微裂缝支撑导流能力实验。研究表明,非剪切裂缝渗流能力在一定闭合压力下几乎全部散失,分支缝和远端微裂缝少量的支撑,会获得一定的渗流能力。滑溜水依靠其黏度基本不具备携砂能力,使用滑溜水进行体积压裂,更多依赖水动力携砂,而依靠黏度携砂更有利于将支撑剂输送到裂缝远端。在进行体积压裂时,段塞打磨建立好裂缝通道后,先期泵注一定量相对大粒径支撑剂,实现近井裂缝下部高导流支撑;然后泵注小粒径支撑剂,同时也可适当提高携砂液黏度,实现分支缝和裂缝远端支撑;最后高砂比尾追相对大粒径支撑剂,实现近井裂缝高导流支撑,从而保障和实现体积压裂裂缝的理想支撑,从根本上提高体积压裂效率与效果。  相似文献   

18.
裂缝扩展与支撑剂运移动态耦合是目前水力压裂数值模拟技术面临的挑战之一。为了探究页岩动态裂缝缝内支撑剂铺置特征,基于三维离散元方法,建立考虑层理的页岩储层裂缝扩展与支撑剂运移动态耦合数值模型,分析了不同支撑剂粒径、支撑剂密度、压裂液黏度和支撑剂注入方式下的裂缝扩展与支撑剂铺置规律。研究表明:粒径越小,支撑剂铺置范围越广,铺置越均匀,粒径为150μm的支撑剂的铺置面积与铺置效率是粒径为600μm的支撑剂的1.8倍;支撑剂密度不是影响裂缝扩展和支撑剂运移的主要因素;压裂液黏度越高,裂缝面积和铺置面积越小,铺置效率越高,黏度从1 mPa·s增至15 mPa·s,裂缝面积减少45%,铺置面积减少34%,铺置效率增大12%;支撑剂注入方式为阶梯注入时,压裂液造缝与携砂效果最好。该研究成果可为页岩储层有效改造提供理论指导。  相似文献   

19.
为了研究页岩储层体积压裂复杂裂缝支撑剂的运移与展布规律,构建了大尺度复杂裂缝支撑剂运移与展布评价实验系统,测试了次裂缝角度、注入排量、加砂浓度、支撑剂粒径、压裂液黏度等对支撑剂运移与展布的影响,研究了主/次裂缝中支撑剂的运移与展布规律。结果表明:(1)裂缝中流体流态随裂缝支撑高度增加逐步由层流向紊流转变;(2)支撑剂在裂缝中的运移方式主要包括悬浮运移和滑移运动;(3)分支前主裂缝的支撑剂展布形态与次裂缝角度、注入排量、加砂浓度和支撑剂粒径等参数相关,其中注入排量为最主要的影响因素;(4)分支后主裂缝的支撑剂质量比与次裂缝角度、注入排量、液体黏度、加砂浓度和支撑剂粒径呈正比,同次裂缝与主裂缝的流量比呈反比;(5)分支后次裂缝的支撑剂质量比与注入排量、次裂缝与主裂缝的流量比、压裂液黏度呈正比,与次裂缝角度、加砂浓度和支撑剂粒径呈反比;(6)分支后主裂缝的砂堤前缘角度同加砂浓度、支撑剂粒径、次裂缝与主裂缝的流量比呈正比,与次裂缝角度、注入排量和压裂液黏度呈反比;(7)次裂缝的砂堤前缘角度同次裂缝角度、加砂浓度与支撑剂粒径呈正比,和注入排量、压裂液黏度、次裂缝与主裂缝的流量比呈反比。结论认为,该研究成果可以为页岩储层体积压裂支撑剂的优选和压裂方案设计提供理论支撑。  相似文献   

20.
为了研究压裂过程中裂缝内支撑剂的动态输砂规律及分布形态,采用自主研制的多尺度裂缝系统有效输砂大型物理模拟实验装置,进行了压裂液黏度、支撑剂类型、注入排量和砂比等对支撑剂在不同尺寸裂缝中的动态输送和砂堤剖面高度影响的模拟实验。实验结果表明,裂缝内动态输砂规律的影响因素,按影响程度从大到小依次为压裂液黏度、支撑剂粒径、砂比和排量;压裂液黏度越高,沉砂量越少,砂堤剖面高度越小而平缓,且在主裂缝中更为明显;支撑剂粒径越大,沉砂量越多,砂堤剖面高度越大,且在主裂缝中更加明显;砂比越高,沉砂量越大,砂堤剖面高度也越大,且在分支缝中增幅更大;随排量增大,主裂缝中的沉砂量略减小,分支缝中的沉砂量差别不大。研究结果为优选压裂液、支撑剂,制定压裂方案,以及优化压裂施工参数提供了理论依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号