首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
以Dawson型磷钨酸(H6P2W18O62·13H2O)和硝酸铜为原料,通过复分解法合成了新型Dawson型磷钨酸铜,并以磷钨酸铜为催化剂催化1,4-丁二醇环化脱水合成四氢呋喃(THF),利用FTIR,XRD,EDS,SEM,Py-IR,NH3-TPD等方法对磷钨酸铜进行了表征。考察了磷钨酸铜催化剂催化合成THF的工艺。表征结果显示,磷钨酸铜具有Dawson结构,分子式为Cu2H2P2W18O62·n H2O,分子形态呈椭球状,同时具有Lewis酸中心和Br?nsted酸中心。与H6P2W18O62·n H2O相比,磷钨酸铜的Lewis酸性强、酸强度增强、但酸量降低。实验结果表明,适宜的反应条件为:催化剂用量3.3%(w)(基于1,4-丁二醇的用量)、反应温度180℃、反应时间35 min,在此条件下THF收率为96.7%。催化剂重复使用5次后,THF收率仍可达到93.3%。  相似文献   

2.
采用浸渍法制备了活性碳负载Dawson结构磷钨酸镧催化剂(La2P2W18O62/C),采用FT-IR、XRD、SEM、TG对其进行了表征。以1,4-丁二醇为原料,La2P2W18O62/C催化合成四氢呋喃(THF),考察了催化剂用量、反应温度、反应时间和催化剂重复使用次数对四氢呋喃产率的影响。结果表明,在优化条件下,即w(La2P2W18O62/C)为3.9%(以1,4-丁二醇质量计)、反应温度185℃、反应时间40min,THF产率为94.9%,催化剂重复使用5次,催化活性基本不变,THF产率仍可达91.3%。  相似文献   

3.
用水热法合成催化剂[Ni(2,2'-bipy)_3]_3(P_2W_(18)O_(62)),以环己酮和乙二醇催化合成作为探针实验,探讨催化剂[Ni(2,2'-bipy)_3]_3(P_2W_(18)O_(62))对缩酮反应的催化性能,从反应物物质的量比、催化剂用量、反应时间和带水剂环己烷用量等诸方面进行探究。利用XRD(X射线衍射)、FT-IR(傅里叶红外光谱)、热分析、SEM(扫描电子显微镜)等表征[Ni(2,2'-bipy)_3]_3(P_2W_(18)O_(62))的组成、结构、热稳定性及形貌,确定合成条件为:环己酮用量为0.2 mol,n(环己酮)∶n(乙二醇)=1∶1.6,催化剂质量分数0.4%,反应时间60 min,带水剂6 mL;在此条件下,产品收率可达80.4%。  相似文献   

4.
以Dawosn结构磷钨酸和L-精氨酸为原料制备了L-精氨酸功能化磷钨酸([Arg]_3P_2W_(18)O_(62)·nH_2O)催化剂,采用EDS,FTIR,SEM,XRD,BET,TG等分析方法对制备的催化剂进行表征,考察了[Arg]_3P_2W_(18)O_(62)·nH_2O催化苯甲醛氧化合成苯甲酸的催化性能,通过单因素实验优化了催化反应条件。实验结果表明,L-精氨酸功能化后磷钨酸仍保持Dawosn结构,但催化剂颗粒和孔体积增大,比表面积减少;优化反应条件为:n(苯甲醛)∶n(H_2O_2)=1∶5,w([Arg]_3P_2W_(18)O_(62)·nH_2O)=1.4%(基于原料总质量),反应温度90℃,反应时间为3.0 h,在此条件下,苯甲酸平均收率为89.9%;催化剂重复使用5次后,苯甲酸收率仍可达80.4%。  相似文献   

5.
以Dawson型磷钨酸钇(Y_2P_2W_(18)O_(62)·nH_2O)为活性组分,多壁碳纳米管(MWCNTs)为载体,通过浸渍法制备了负载型磷钨酸钇催化剂。利用FTIR,XRD,SEM,TG,Py-IR,NH3-TPD,N2吸附-脱附等手段对催化剂进行表征,考察了催化剂催化正丁醇与乙酸液相反应合成乙酸正丁酯的性能。表征结果显示,催化剂具有Dawson结构,且同时具有Br觟nsted酸中心和Lewis酸中心,与Y_2P_2W_(18)O_(62)·nH_2O相比,催化剂出现了弱酸中心,总酸量减小,催化剂的比表面积及热稳定性均明显提高。实验结果表明,在n(正丁醇)∶n(乙酸)=2.0∶1.0、催化剂用量为反应物的1.7%(w)、反应温度125℃、反应时间2.0 h的条件下,酯化率为97.4%。催化剂重复使用5次时,酯化率仍可达80.7%。  相似文献   

6.
以硅藻土为载体,采用浸渍法制备了H6P2W18O62/硅藻土催化剂,并采用FTIR,EDS,XRD,SEM等手段对催化剂进行了表征;以对羟基苯甲酸正丁酯的合成反应为探针,考察了H6P2W18O62/硅藻土催化剂的性能;通过单因次和正交实验研究了H6P2W18O62负载量、催化剂用量、正丁醇与对羟基苯甲酸的摩尔比(醇酸比)、反应时间和反应温度对酯化反应的影响。确定了优化工艺条件为:H6P2W18O62负载量为40%(基于硅藻土的质量)、催化剂用量0.5 g(占反应体系总质量的2.8%)、醇酸比3、反应时间3.0 h、反应温度125℃。在此条件下,对羟基苯甲酸正丁酯的平均收率可达90.8%;催化重复使用5次,对羟基苯甲酸正丁酯收率仍可达65.6%。  相似文献   

7.
使用溶胶凝胶法合成H_6P_2W_9Mo_9O_(62)/SiO_2,利用X射线衍射仪(XRD)、红外拉曼光谱仪(FT-IR)、差热分析仪(TG)及扫描电镜(SEM)分析H_6P_2W_9Mo_9O_(62)/SiO_2的热稳定性、结构和形貌。以环己酮和乙二醇为反应原料,H_6P_2W_9Mo_9O_(62)/SiO_2为催化剂,合成环己酮乙二醇缩酮,采用正交试验法,探讨了醇酮物质的量比、催化剂加量、反应时间、环己烷加量对合成缩酮的影响。结果表明,当n(环己酮)∶n(乙二醇)=1∶1.3、催化剂质量为反应物总质量的0.8%、带水剂加量8 mL、反应时间45 min时,环己酮乙二醇缩酮收率可达80.4%。  相似文献   

8.
氧化铝固载杂多酸催化合成聚四氢呋喃   总被引:1,自引:1,他引:0  
 以氧化铝固载杂多酸(HPA/Al2O3)为催化剂、环氧氯丙烷(ECH)为促进剂催化四氢呋喃(THF)开环聚合,合成了含有ECH结构单元的端羟基聚四氢呋喃(PTHF)。考察了催化剂制备条件、促进剂用量和反应温度对产物收率和数均相对分子质量的影响。研究结果表明,催化剂的酸强度(H0)在+0.8~+3.0范围内的酸量会影响反应收率,酸量越多,收率越高,得到的聚合产物有合适的数均相对分子质量(700~3000)和较窄的相对分子质量分布(Mw/Mn<2.0)。最佳聚合条件为反应时间4 h,杂多酸负载量35 %(质量分数), n(ECH)/n(THF) = 0.12,反应温度50℃。  相似文献   

9.
Dawson结构杂多磷钨酸钠催化氧化噻吩脱硫   总被引:7,自引:2,他引:5  
以钨酸、磷酸二氢钠为原料,通过水热法合成了 Dawson 结构杂多磷钨酸钠(P_2W_(18))。以 P_2W_(18)为催化剂、无水乙醇为助催化剂、质量分数30%的过氧化氢水溶液为氧化剂,在温和条件下将模拟燃油中的噻吩氧化为砜类:亚砜类等极性较强的物质,并以 N,N-二甲基甲酰胺为萃取剂将其萃取出来,考察了反应温度、反应时间、过氧化氢水溶液用量、萃取剂用量和萃取级数对脱硫率的影响。在模拟燃油(硫含量500 mg/L)20 mL、P_2W_(18)0.030 g、无水乙醇1.2 mL、过氧化氢水溶液0.12 mL、反应温度310 K、反应时间60 min、萃取剂与油相的体积比1.0、萃取3次的优化条件下,脱硫率达96.7%。反应结束后,可通过简单的倾倒将模拟燃油与催化剂分离,催化剂可重复使用5次,稳定性较好。  相似文献   

10.
以K_2CO_3/MgO为固体碱催化剂,正丙醇与碳酸二乙酯(DEC)经液相酯交换合成了碳酸乙丙酯(EPC);用X射线衍射和CO_2程序升温脱附的方法对催化剂进行了表征。表征结果显示,随K_2CO_3负载量的增加,MgO载体的特征衍射峰强度减弱,在K_2CO_3负载量较高时有明显的K_2O晶相出现;K_2CO_3/MgO催化剂上的弱碱性位可能是催化该反应的活性中心。同时考察了K_2CO_3负载量、催化剂用量、反应时间和原料配比对酯交换反应的影响。实验结果表明,K_2CO_3负载量为20%(相对于催化剂的质量分数)的K_2CO_3/MgO催化剂对该反应有较好的催化性能;适宜的反应条件为:催化剂用量为反应物质量的1.00%、反应温度403 K、反应时间4 h、n(DEC):n(正丙醇)=1.0:1.5;在此条件下,DEC的转化率为62.32%,EPC的选择性为83.29%,EPC的收率为51.89%。  相似文献   

11.
SO_4~(2-)/TiO_2-WO_3催化1,4-丁二醇液相脱水环化合成四氢呋喃   总被引:3,自引:0,他引:3  
以钛酸四丁酯为原料,十六烷基三甲基溴化铵(CTAB)作模板剂,通过水热法制备出TiO_2,并进一步制得SO_4~(2-)/TiO_2-WO_3固体超强酸,采用IR、XRD、BET对其进行了表征。以催化1,4-丁二醇脱水制备四氢呋喃为探针反应,通过正交实验确定了反应的最佳条件:反应温度180~190℃,反应时间45 min,w(催化剂)= 4.6%(相对1,4丁二醇质量),四氢呋喃的收率可达91.5%。催化剂重复使用3次,收率仍可达87.0%,同时对反应机理进行了探讨。  相似文献   

12.
Dawson结构磷钨杂多酸催化环己醇合成己二酸   总被引:3,自引:1,他引:2  
以Dawson结构磷钨杂多酸为催化剂,由过氧化氢氧化环己醇合成了己二酸。通过正交实验和单因次实验考察了各因素对反应的影响,确定的优化工艺条件为:n(环己醇):n(过氧化氢):n(磷钨杂多酸)= 100:450:0.15,反应温度为100℃,反应6 h,己二酸分离收率达90.1%。催化剂重复使用5次,收率仍可达到79.8%  相似文献   

13.
负载型硅钨酸催化1,4-丁二醇环化脱水制备四氢呋喃   总被引:1,自引:0,他引:1  
研究了负载型硅钨酸催化剂的载体种类、酸强度、酸量、硅钨酸与载体的结合能力对其催化1,4-丁二醇环化脱水制备四氢呋喃的影响。结果表明,以TiO2作载体的催化剂比以高岭土、硅藻土、活性炭作载体的活性高。当载体为TiO2、硅钨酸负载量大于15%、1,4-丁二醇/催化剂(质量比)=300:1时,在反应精馏系统中反应40~50min,1,4-丁二醇的转化率达98%,四氢呋喃的选择性达99%以上。  相似文献   

14.
以杂多酸为催化剂由1,4-丁二醇脱水制四氢呋喃   总被引:9,自引:2,他引:7  
提出了以杂多酸为催化剂由1,4-丁二醇脱水制四氢呋喃(THF)的合成方法,THF收率达90%,精制后纯度达98%以上.  相似文献   

15.
研究了常压下铜系 (CuO ZnO Al2 O3 )催化剂上 1,4 丁二醇脱氢制γ 丁内酯反应工艺条件及催化剂性能对反应结果的影响 ,并对催化剂的稳定性进行考察。结果表明 ,在适宜的反应条件下 ,优选催化剂的 1,4 丁二醇单程转化率可≥ 99.9% ,γ 丁内酯的选择性≥ 99.6 % ,预计催化剂寿命可超过 1年  相似文献   

16.
以H-ZSM-5系列分子筛、HY、Hβ、Al2O3等固体酸作为催化剂,在固定床反应器中考察了其对四氢呋喃催化氨化合成吡咯烷反应的催化性能。结果表明,n(Si)/n(Al)=80的H-ZSM-5催化剂的活性最佳,其催化四氢呋喃氨化合成吡咯烷的最佳工艺条件为:常压,反应温度350℃,氨气与四氢呋喃摩尔比6,停留时间6.9s,此时四氢呋喃的转化率为82.9%,吡咯烷的收率为62.3%。在优化条件下催化剂连续工作600h,四氢呋喃的转化率保持在75%以上,吡咯烷的选择性有所降低,但吡咯烷的收率仍然保持在55%以上。利用XRD、N2吸附-脱附和NH3-TPD等手段对使用前后的催化剂进行表征,得出催化剂活性下降是由于较长时间的连续反应使得催化剂表面产生了积炭,堵塞了催化剂内部较小孔径的孔道,覆盖了催化剂表面的酸性位点。利用空气氧化法对催化剂进行在线再生后,催化剂的催化性能基本恢复到初始水平。  相似文献   

17.
顺酐加氢和1,4-丁二醇脱氢耦合法制备γ-丁内酯的催化剂   总被引:1,自引:0,他引:1  
采用浸渍法制备了一系列Cu-Zn/Al2O3催化剂,在固定床原粒度连续流动反应器中评价了催化剂对顺酐加氢和1,4-丁二醇脱氢耦合制备γ-丁内酯的催化性能;采用XRD和俄歇电子能谱等方法对催化剂进行了表征,考察了催化剂制备条件和工艺条件对催化剂性能的影响。实验结果表明,Cu和助剂Zr的含量以及竞争吸附剂对催化剂的性能有明显的影响,适宜的催化剂制备条件为:Cu质量分数15%,Zn质量分数10%,Zr质量分数3%~5%,柠檬酸为竞争吸附剂;适宜的反应条件为:温度230~240℃,压力0.03~0.05 MPa,原料液态空速0.3~0.5 h-1,1,4-丁二醇与顺酐的摩尔比1.6。在该反应条件下,顺酐转化率、1,4-丁二醇转化率和γ-丁内酯选择性均约为99%。  相似文献   

18.
通过场发射扫描电镜(FE-SEM)、热重-差热分析(TG-DTA)、X射线衍射(XRD)等手段对Cu-Fe-Co基催化剂进行表征,考察其物性能否满足合成气制备增塑剂醇的要求。XRD结果表明Cu、Fe、Co三种金属组分在载体上分散均匀,是催化剂CO加氢反应的活性中心;TG结果表明此催化剂最佳热解温度为673K且成型后热稳定性良好,催化剂反应后积碳也比较少;SEM结果表明此催化剂具有丰富的孔隙结构,利于增塑剂醇合成反应进行。以加氢反应考察不同温度、压力、空速(GHSV)、V(H2):V(CO)等条件对催化剂催化性能的影响,重点考察合成气反应后总醇时空收率、增塑剂醇分布以及CO转化率。结果表明在563~653K范围内,随反应温度升高增塑剂醇比例从36.87%逐渐降低,总醇时空收率呈现先上升后下降的趋势,623K总醇的时空收率最高为152.01 g•(kg•h)-1;反应压力升高总醇时空收率增加,CO转化率缓慢上升但幅度很小,增塑剂醇选择性变化很小;空速3000~8000h-1范围内,随空速增加,醇的时空收率升高但CO转化率降低,对醇分布影响也较小。随合成气中H2比例增加,总醇时空收率先升高后降低,增塑剂醇选择性降低,V(H2):V(CO)=1:1时,总醇时空收率最高为260.79 g•(kg•h)-1,增塑剂醇为28.79%。  相似文献   

19.
SiO_2负载硫酸锆固体酸催化酯化反应   总被引:10,自引:2,他引:8  
采用溶胶-凝胶法制备了SiO2载体,同时采用浸渍法制备了SiO2负载Zr(SO4)2固体酸催化剂(Zr(SO4)2/SiO2),并将其用于催化油酸与乙醇进行酯化反应;考察了催化剂焙烧温度、Zr(SO4)2负载量、n(乙醇)∶n(油酸)、催化剂用量和反应时间对酯化反应的影响。实验结果表明,与Zr(SO4)2催化剂相比,Zr(SO4)2/SiO2催化剂在油酸与乙醇的酯化反应中具有较高的活性。最佳反应条件为:以焙烧温度为250℃制得的Zr(SO4)2负载量为25%的Zr(SO4)2/SiO2为催化剂,n(乙醇)∶n(油酸)=6,催化剂占油酸的质量分数为5.0%,反应时间6h。在此条件下,油酸乙酯的收率可达94.8%。Zr(SO4)2/SiO2催化剂的制备方法简单、活性高,产品收率高,后处理简便,无三废污染,符合节能环保、绿色催化的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号