首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work proposes a robust tracking controller for a helicopter laboratory setup known as the twin rotor MIMO system (TRMS) using an integral sliding mode controller. To eliminate the discontinuity in the control signal, the controller is augmented by a sliding mode disturbance observer. The actuator dynamics is handled using a backstepping approach which is applicable due to the continuous chattering-free nature of the command signals generated using the disturbance observer based controller. To avoid the complexity of analytically differentiating the command signals, a first order sliding mode differentiator is used. Stability analysis of the closed loop system and the ultimate boundedness of the tracking error is proved using Lyapunov stability arguments. The proposed controller is validated by several simulation studies and is compared to other schemes in the literature. Experimental results using a hardware-in-the-loop system validate the robustness and effectiveness of the proposed controller.  相似文献   

2.
This paper investigates a backstepping sliding mode fault-tolerant tracking control problem for a hydro-turbine governing system with consideration of external disturbances, actuator faults and dead-zone input. To reduce the effects of the unknown random disturbances, the nonlinear disturbance observer is designed to identify and estimate the disturbance term. To drastically decrease the complexity of stability functions selection and controller design, the recursive processes of the backstepping technique are employed. Additionally, based on the nonlinear disturbance observer and the backstepping technique, the sliding mode fault-tolerant tracking control approach is developed for the hydro-turbine governing system (HTGS). The stability of HTGS is rigorously demonstrated through Lyapunov analysis which is capable to satisfy a tracking control performance. Finally, comprehensive simulation results are presented to illustrate the effectiveness and superiority of the proposed control scheme.  相似文献   

3.
This study proposes an adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. A transformation with respect to tracking error using certain performance functions is used to ensure the transient and steady-state performances of the trajectory tracking control for robotic manipulators. Using the transformed error, a nonsingular terminal sliding mode surface is proposed. A continuous terminal sliding mode control (SMC) is presented to stabilize the system. To compensate for the uncertainty and external disturbance, a novel sliding mode disturbance observer is proposed. Considering the unknown boundary of the derivative of a lumped disturbance, an adaptive law based on the idea of equivalent control is designed. Combining the adaptive law, continuous nonsingular terminal SMC, and sliding mode disturbance observer, the adaptive sliding mode disturbance rejection control with prescribed performance is developed. Simulations are carried out to demonstrate the effectiveness of the proposed approach.  相似文献   

4.
This paper discusses how to improve the tracking precision of a laser beam positioning system by using a new sliding model tracking strategy. A continuous strategy of integral sliding mode control is proposed in order to achieve high-accuracy and high robustness of position tracking control. Modelling deviation and unmeasurable external disturbance is compen-sated for by an integral action term. This scheme can solve the chattering problem without loss of robustness and controaccuracy. The simulation and experimental results show that a laser beam position control system with the integrated sliding mode control (ISMC) has higher robustness, higher global stability, higher tracking precision, and speed than a traditional controller.  相似文献   

5.
针对扰动对永磁同步电机转速伺服系统性能的影响,提出了基于扰动观测器的电流环自适应滑模控制方法。设计了自适应律在线估计系统的内部参数摄动以补偿模型不确定性扰动。同时,设计了滑模扰动观测器实时估计系统外部负载扰动,并将观测值前馈补偿到电流环自适应滑模控制器,在提高系统鲁棒性的同时降低滑模控制系统的抖振。实验结果显示,采用基于扰动观测器的电流环自适应滑模控制方法,系统可快速、准确、无超调地跟踪900r/min的速度指令,调节时间为0.08s,稳态误差为±5r/min。加入0.6N·m的负载扰动,该控制方法的最大转速波动为21r/min,比PI控制方法的转速波动减小了3.4%。仿真和实验结果表明,基于扰动观测器的电流环自适应控制方法提高了永磁同步电机转速伺服系统的鲁棒性和动态响应性能,同时可有效抑制滑模控制系统的抖振。  相似文献   

6.
This paper presents a robust adaptive integral backstepping control strategy with friction compensation for realizing accurate and stable control of opto-electronic tracking system in the presence of nonlinear friction and external disturbance. With the help of integral control term to decrease the steady-state error of the system and combining robust adaptive control approach with the backstepping design method, a novel control method is constructed. Nonlinear modified LuGre observer is designed to estimate friction behavior. Robust adaptive integral backstepping control strategy is developed to compensate the changes in friction behavior and external disturbance of the servo system. The stability of the opto-electronic tracking system is proved by Lyapunov criterion. The performance of robust adaptive integral backstepping controller is verified by the opto-electronic tracking system with modified LuGre model in simulation and practical experiments. Compared to the adaptive integral backstepping sliding mode control method, the root mean square of angle error is reduced by 26.6% when the proposed control method is used. The experiment results demonstrate the effectiveness and robustness of the proposed strategy.  相似文献   

7.
A novel adaptive sliding mode control with application to MEMS gyroscope   总被引:1,自引:0,他引:1  
This paper presents a new adaptive sliding mode controller for MEMS gyroscope; an adaptive tracking controller with a proportional and integral sliding surface is proposed. The adaptive sliding mode control algorithm can estimate the angular velocity and the damping and stiffness coefficients in real time. A proportional and integral sliding surface, instead of a conventional sliding surface is adopted. An adaptive sliding mode controller that incorporates both matched and unmatched uncertainties and disturbances is derived and the stability of the closed-loop system is established. The numerical simulation is presented to verify the effectiveness of the proposed control scheme. It is shown that the proposed adaptive sliding mode control scheme offers several advantages such as the consistent estimation of gyroscope parameters including angular velocity and large robustness to parameter variations and external disturbances.  相似文献   

8.
This paper presents a novel finite-time sliding mode controller applied to perturbed second order systems. The proposed scheme employs a disturbance observer that can identify growing in time disturbances. Then, the observer is combined with a sliding mode controller to achieve finite-time stabilization of the second-order system. The convergence of the observer as well as the finite-time stability of the closed-loop system is theoretically demonstrated. Besides, it is also shown that the finite-time convergence properties of a given controller can be enhanced when using a compensation term based on the disturbance observer. The proposed controller is compared with a twisting algorithm and a finite-time sliding mode controller with disturbance estimation. Also, a conventional proportional integral derivative (PID) controller is combined with the proposed disturbance observer in a trajectory tracking task. Numerical simulations indicate that the proposed controller attains finite-time stabilization of the second order system by requiring a less amount of power than that demanded by the other control schemes and without being affected by the peaking phenomenon. Besides, the performance of the PID technique is enhanced by applying the proposed control methodology.  相似文献   

9.
This paper addresses the problem of finite-time tracking controller design for nth-order chained-form non-holonomic systems in the presence of unknown disturbances. To this aim, a generalized disturbance observer based controller is proposed and combined with a recursive terminal sliding mode approach which guarantees finite-time convergence of the disturbance observer dynamic. By introducing a time-varying transformation and introducing a new control law, the existence of the sliding around the recursive terminal sliding mode surfaces is guaranteed. Finally, the proposed approach is applied for a wheeled mobile robot with a fourth-order chained-form non-holonomic model. The simulation results demonstrate the desirable and robust tracking performance of the proposed approach in the presence of unknown disturbance.  相似文献   

10.
For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method.  相似文献   

11.
This paper proposes a higher-order sliding mode observer based robust backstepping control to realize high-performance sensorless speed regulation for the interior permanent magnet synchronous motor (IPMSM). A new robust adaptive super-twisting higher-order sliding mode based observer is proposed to estimate the rotor position. The proposed observer has advantages of sliding chattering reduction and robustness against uncertainties. And, a new robust integral adaptive backstepping control with sliding mode actions is designed to achieve precise speed regulation. The uncertainties with unknown bounds can be stabilized by the sliding mode actions. And both transient and steady performance can be achieved by using the sliding mode and integral actions simultaneously. Then, a sensorless scheme is put forward to by combining the presented observer and the proposed controller. The stability of the observer and controller are verified. Simulation and experiment results validate the proposed approach.  相似文献   

12.
In this paper, a new model-free adaptive digital integral terminal sliding mode predictive control scheme is proposed for a class of nonlinear discrete-time systems with disturbances. The characteristic of the proposed control approach is easy to be implemented because it merely adopts the input and output data model of the system based on compact form dynamic linearization (CFDL) data-driven technique, while the technique of perturbation estimation is applied to estimate the disturbance term of the system. Moreover, by means of combining model predictive control and CFDL digital integral terminal sliding mode control (CFDL-DITSMC), the CFDL digital integral terminal sliding mode predictive control (CFDL-DITSMPC) method is proposed, which can further improve the tracking accuracy and disturbance rejection performance in comparison with the CFDL model-free adaptive control, neural network quasi-sliding mode control and the CFDL-DITSMC scheme. Meanwhile, the stability of the proposed approach is guaranteed by theoretical analysis, and the effectiveness of the proposed method is also illustrated by numerical simulations and the experiment on the two-tank water level control system.  相似文献   

13.
This paper proposes a tracking control method for a three-wheeled omnidirectional manipulator system (OMMS) with disturbance and friction. The OMMS is separated into two subsystems, a three-wheeled omnidirectional mobile platform (OMP) and a selective compliant articulated robot for assembly (SCARA) type of manipulator. Therefore, two controllers are designed to control the OMP and the manipulator system. Firstly, based on a kinematic modeling of the manipulator, a kinematic controller (KC), combined with an integral sliding mode controller (ISMC), is designed for the end-effector of the manipulator to track a desired trajectory with the desired angular velocity vector of links. Secondly, a differential sliding mode controller (DSMC) based on a dynamic modeling of the OMP with force external disturbances is proposed to obtain control inputs moving the OMP so that the manipulator tracks the desired posture without singularity. The system stability is proven using Lyapunov stability theory. The simulation and experimental results are presented to illustrate the effectiveness of the proposed controllers in the presence of disturbance and friction.  相似文献   

14.
In this paper, accurate trajectory tracking control problem of a quadrotor with unknown dynamics and disturbances is addressed by devising a hybrid finite-time control (HFTC) approach. An adaptive integral sliding mode (AISM) control law is proposed for altitude subsystem of the quadrotor, whereby underactuated characteristics can decoupled. Backstepping technique is further deployed to control the horizontal position subsystem. To exactly attenuate external disturbances, a finite-time disturbance observer (FDO) combining with nonsingular terminal sliding mode (NTSM) control strategy is constructed for attitude subsystem, and thereby achieve finite-time stability. Using the compounded control scheme, trajectory tracking errors can be stabilized rapidly. Simulation results and comprehensive comparisons show that the proposed HFTC scheme has remarkably superior performance.  相似文献   

15.
This paper addresses the design of attitude and airspeed controllers for a fixed wing unmanned aerial vehicle. An adaptive second order sliding mode control is proposed for improving performance under different operating conditions and is robust in presence of external disturbances. Moreover, this control does not require the knowledge of disturbance bounds and avoids overestimation of the control gains. Furthermore, in order to implement this controller, an extended observer is designed to estimate unmeasurable states as well as external disturbances. Additionally, sufficient conditions are given to guarantee the closed-loop stability of the observer based control. Finally, using a full 6 degree of freedom model, simulation results are obtained where the performance of the proposed method is compared against active disturbance rejection based on sliding mode control.  相似文献   

16.
In this paper, the problem of fault-tolerant control (FTC) for spacecraft attitude stabilization system with actuator fault and mismatched disturbance is investigated. A novel fault tolerant control strategy based on adaptive fast terminal sliding mode control (AFTSMC) is proposed. Firstly, a novel composite observer is proposed to estimate the disturbance, actuator efficiency factor and partial states of the system. By introducing a sliding mode observer, the bias actuator fault is reconstructed. Subsequently, in accordance with the estimated information, a novel sliding mode fault tolerant controller is designed. The proposed control scheme contains two compensators and two adaptive parameters to attenuate the mismatched disturbance, to compensate actuator fault, and to guarantee fast convergence of the system. Furthermore, the reachability of sliding motion is proved. The simulation results for the spacecraft system illustrate the effectiveness of the proposed method.  相似文献   

17.
为实现挖掘机器人的自动挖掘,在挖掘机器人的轨迹规划器给出铲斗期望运动轨迹的情况下,需要挖掘机器人的控制系统能够控制其工作装置实现对给定轨迹的准确跟踪.利用拉格朗日方法建立了挖掘机器人工作装置的三自由度动力学方程,设计了自适应模糊滑模变结构控制器.利用模糊控制动态调节切换增益,将滑模控制的切换项转化为连续的模糊系统,增强了控制系统对挖掘机器人工作装置不确定性和外界干扰的鲁棒性,削弱了滑模控制的抖振现象,并且有较强的自适应跟踪能力.利用MATLAB7.4/Simulink工具箱对所设计的控制器进行了仿真,给出了自适应模糊滑模控制的跟踪性能及误差.  相似文献   

18.
This paper focuses on the current control of a permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and external disturbances. To improve the performance of the PMSM current loop in terms of the speed of response, tracking accuracy, and robustness, a hybrid control strategy is proposed by combining the adaptive sliding mode control and sliding mode disturbance observer (SMDO). An adaptive law is introduced in the sliding mode current controller to improve the dynamic response speed of the current loop and robustness of the PMSM drive system to the existing parameter variations. The SMDO is used as a compensator to restrain the external disturbances and reduce the sliding mode control gains. Experiments results demonstrate that the proposed control strategy can guarantee strong anti-disturbance capability of the PMSM drive system with improved current and speed-tracking performance.  相似文献   

19.
The distributed finite-time formation tracking control problem for multiple unmanned helicopters is investigated in this paper. The control object is to maintain the positions of follower helicopters in formation with external interferences. The helicopter model is divided into a second order outer-loop subsystem and a second order inner-loop subsystem based on multiple-time scale features. Using radial basis function neural network (RBFNN) technique, we first propose a novel finite-time multivariable neural network disturbance observer (FMNNDO) to estimate the external disturbance and model uncertainty, where the neural network (NN) approximation errors can be dynamically compensated by adaptive law. Next, based on FMNNDO, a distributed finite-time formation tracking controller and a finite-time attitude tracking controller are designed using the nonsingular fast terminal sliding mode (NFTSM) method. In order to estimate the second derivative of the virtual desired attitude signal, a novel finite-time sliding mode integral filter is designed. Finally, Lyapunov analysis and multiple-time scale principle ensure the realization of control goal in finite-time. The effectiveness of the proposed FMNNDO and controllers are then verified by numerical simulations.  相似文献   

20.
针对交流伺服电机作为驱动装置的2-DOF并联机器人,设计出一种带有积分切换面的自适应滑模控制器。首先,带有积分运算切换面的变结构控制器使系统具有对未知参数变化和外部干扰不敏感的特性。其次,通过设计一种自适应律,实现对系统不确定量的在线辨识估计,以辨识结果实时调整控制器参数,以削弱系统抖动,提高了控制系统的实用性。仿真结果表明所设计控制器抗干扰能力强,能较好地实现2-DOF并联机器人各支路的运动控制,具有较好的稳定性和鲁棒性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号