首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
沉积参数对硬质合金基体微/纳米金刚石薄膜生长的影响   总被引:1,自引:0,他引:1  
基体温度、反应压力和碳源浓度等沉积参数决定热丝化学气相沉积金刚石薄膜的性能。运用正交试验方法,研究参数对硬质合金基体金刚石薄膜生长的综合作用。采用场发射扫描电镜(FE-SEM)、原子力显微镜(AFM)和拉曼(Raman)光谱检测薄膜的形貌结构、生长速率和成分。结果表明:随着基体温度的降低,金刚石形貌从锥形结构向团簇状结构转变;低反应压力有利于纳米金刚石薄膜的生成;生长速率受反应压力和碳源浓度综合作用的影响。  相似文献   

2.
采用3 kW/2 450 MHz微波等离子体化学气相沉积(microwave plasma chemical vapor deposition, MPCVD)系统,以单晶硅为基底材料,采用单因素试验法研究微米级金刚石膜的生长工艺,分别探究衬底温度、腔体压强和甲烷体积分数对金刚石成膜过程的影响,获得微米级金刚石膜的最优生长工艺。结果表明:金刚石膜的生长速率与衬底温度、腔体压强、甲烷体积分数呈正相关;衬底温度和腔体压强对金刚石膜质量的影响存在最佳的临界值,甲烷体积分数过高不利于形成金刚石相。金刚石膜生长的最佳工艺参数为:功率为2 200 W,衬底温度为850 ℃,腔体压强为14 kPa,甲烷的体积分数为2.5%。在此条件下,金刚石膜生长速率为1.706 μm/h,金刚石相含量为87.92%。   相似文献   

3.
This article investigates the role of substrate temperature in the deposition of diamond films using a newly developed time-modulated chemical vapor deposition (TMCVD) process. TMCVD was used to deposit polycrystalline diamond coatings onto silicon substrates using hot-filament chemical vapor deposition system. In this investigation, the effect of (a) substrate temperature and (b) methane (CH4) content in the reactor on diamond film deposition was studied. The distinctive feature of the TMCVD process is that it time-modulates CH4 flow into the reactor during the complete growth process. It was noted that the substrate temperature fluctuated during the CH4 modulations, and this significantly affected some key properties of the deposited films. Two sets of samples have been prepared, in each of which there was one sample that was prepared while the substrate temperature fluctuated and the other sample, which was deposited while maintaining the substrate temperature, was fixed. To keep the substrate temperature constant, the filament power was varied accordingly. In this article, the findings are discussed in terms of the CH4 content in the reactor and the substrate temperature. It was found that secondary nucleation occurred during the high timed CH4 modulations. The as-deposited films were characterized for morphology, diamond-C phase purity, hardness, and surface roughness using scanning electron microscopy, Raman spectroscopy, Vickers hardness testing, and surface profilometry, respectively.  相似文献   

4.
利用微波等离子化学气相沉积法,以H2/CH4/N2为混合气源,在CVD金刚石单晶基底上同质外延生长金刚石。在一定的甲烷浓度下,分析衬底温度对金刚石结晶质量及光学性能的影响。利用光学显微镜、扫描电子显微镜(SEM)表征金刚石单晶,得到金刚石单晶的样品颜色、内部缺陷、表面形貌等信息。对金刚石样品进行抛光处理后,使用红外傅里叶变换光谱仪对金刚石进行检测,得到红外波段的光学透过率。结果表明:在生长温度为930 ℃左右时金刚石的结晶质量最好,红外透过率最高,可达70%以上;略高或略低的温度均会降低其红外透过率,相对来说略高的温度下生长的金刚石结晶质量和红外性能优于低温下生长的金刚石的。N2的掺杂会导致单晶带有棕褐色,生长速率显著变快,严重降低红外波段的光学性能。   相似文献   

5.
The effect of substrate temperature (Ts) on the nucleation and growth of diamond on silicon nitride (Si3N4) based substrates deposited via the oxy-acetylene combustion flame technique was investigated. The diamond deposits were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The nucleation density of the resulting deposits, which was of the order 105 nuclei/cm2, was used to approximate the activation energy for heterogeneous nucleation of diamond as32 – 40 kcal/mol. An Arrhenius plot of particle growth rate was used to calculate the activation energy for diamond growth as9.4 and 8.3 kcal/mol in the center and outside annulus of the deposit, respectively. These results suggest that the heterogeneous nucleation of diamond is a highly energetic process and may in fact be responsible for the observed low nucleation density of diamond on Si3N4. Thermodynamic analysis of gas/substrate reactions under conventional process conditions predicted that SiC formation, which is known to be a necessary precursor to diamond nucleation on Si, is energetically forbidden. Via kinetic and thermodynamic considerations, a patented in situ multistage deposition technique was developed which yielded continuous diamond coatings on Si3N4 substrates without extensive substrate preparation.  相似文献   

6.
Boron-doped diamond (BDD) films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850 °C by hot filament chemical vapor deposition (HFCVD) method. The effect of deposition temperature on the properties of the boron-doped diamond films on tungsten carbide substrate was investigated. It is found that boron doping obviously enhances the growth rate of diamond films. A relatively high growth rate of 544 nm/h was obtained for the BDD film deposited on the tungsten carbide at 650 °C. The added boron-containing precursor gas apparently reduced activation energy of film growth to be 53.1 kJ/mol, thus accelerated the rate of deposition chemical reaction. Moreover, Raman and XRD analysis showed that heavy boron doping (750 and 850 °C) deteriorated the diamond crystallinity and produced a high defect density in the BDD films. Overall, 600–700 °C is found to be an optimum substrate temperature range for depositing BDD films on tungsten carbide substrate.  相似文献   

7.
以H2和CH4作为反应气体,采用热丝化学气相沉积法(HFCVD)在钛合金(Ti6Al4V)平板基体上制备金刚石薄膜,利用扫描电镜(SEM)、X射线衍射仪(XRD)、激光拉曼光谱(Raman)和洛氏硬度仪分析薄膜的表面形貌、结构、成分和附着性能,研究了高温形核-低温生长的梯度降温法对原始钛合金和反应磁控溅射TiC过渡层的钛合金表面沉积金刚石薄膜的影响。结果表明:原始基体区和TiC过渡层区沉积的金刚石薄膜平均尺寸分别为0.77μm和0.75μm,薄膜内应力分别为-5.85GPa和-4.14GPa,TiC层的引入可以有效提高金刚石的形核密度和晶粒尺寸的均匀性,并减少薄膜残余应力;高温形核-低温生长的梯度降温法可以有效提高金刚石的形核密度和质量,并提高原始基体上沉积金刚石薄膜的附着性能。  相似文献   

8.
Diamond thin films have been deposited using hot filament chemical vapour deposition technique on manually scratched p-Si(1 0 0) substrate, with and without magnesium interlayer. In spite of magnesium melting point being lower (Tm = 649 °C) than the growth temperature of the substrate (Ts  750 °C) used in these experiments, it was found that high quality diamond films could be grown on Mg covered substrate. A liquid substrate is probably generated during the diamond film growth. Raman spectroscopy analysis exhibited only the triply degenerate, zone centre optical phonon peak at 1333 cm−1 indicating that nearly stress free crystallites were present. Broadening of the Raman peak (11.76 cm−1) indicates that some small crystallites also are present. Scanning electron and atomic force microscopy accompanied by X-ray diffraction analysis where used to compare the details of diamond film growth directly on scratched Si(1 0 0) and Mg interlayered scratched Si(1 0 0) substrates.  相似文献   

9.
There is a need for selective diamond growth in microelectronic and tool industries. This research was di-rected towards novel approaches in the selective diamond growth on non- diamond substrates. Diamond film was selectively deposited on the copper substrate by laser- hydrocarbon liquid (benzene C6H6) inter-action at room temperature which was used as seed for subsequent growth of diamond by the hot filament chemical vapor deposition (HFCVD). Diamond was also selectively grown on the gold patterned alumina substrate by manipulating HFCVD processing conditions. Diamond was selectively grown on the pat-terned silicon wafer (without having any scratches).  相似文献   

10.
利用自制5 kW微波等离子体化学气相沉积(MPCVD)装置,沉积得到了晶粒尺寸达到500μm的大颗粒金刚石。采用抛光后的硅作为基底,CH4和H2为气源,分别研究了基片边缘与中心区域沉积的大颗粒金刚石的表面形貌。通过SEM表征了金刚石的表面形貌,发现基片边缘由于产生放电现象加速了金刚石的沉积,而晶粒之间相互挤压导致了孪晶的产生,影响其生长质量。相反由于中心区域形核密度低,使得晶粒在优先生长的模型下抑制了小晶粒的生长,从而提供更多的能量促进大晶粒的生长,在本实验条件下(100)晶面得到了长大,并获得了表面平整、晶体形貌良好的大颗粒金刚石。最后介绍了国内外合成大颗粒金刚石的研究进展,并对其研究方向做出了展望。  相似文献   

11.
采用热丝化学气相沉积法制备金刚石薄膜,运用惰性示踪气体发射光谱法对等离子基团进行分析。实验所采用的惰性示踪气体为氩气。热丝CVD金刚石薄膜的表面形貌和断面形貌通过SEM进行表征,质量通过Raman光谱表征,从而对等离子体诊断结果进行验证。结果表明:保持其他工艺参数不变时,随碳源混合气体流量不断增加,电子温度总体呈下降趋势,但在50~70cm3/min出现反常的先增加后下降,在60cm3/min附近时出现最大值,此时的带电粒子到达基片时具有最大通量和能量,与此同时,CO、C2、CH等几种含碳基团浓度在60cm3/min处出现最低,气相沉积过程向着金刚石薄膜沉积的方向发展,生长速率达到最大,金刚石薄膜的质量却随碳源混合气体流量的增加而降低。   相似文献   

12.
Highly oriented diamond particles were deposited on the mirror-polished (100) silicon substrates in the belljar type microwave plasma deposition system. The diamond films were deposited by a three-step process consisting of carburization, bias-enhanced nucleation and growth. The bias-enhanced nucleation was performed under the deposition conditions such as 2-3% of methane concentration in hydrogen, 1333-2666 Pa of total pressure, the negative bias voltage below 200V and the substrate temperature of 1073 K. By adjusting the geometry of the substrate and substrate holder, very dense disc-shaped plasma was formed on the substrate when the bias voltage was below 200V. As characterized by transmission electron microscopy (TEM), almost perfectly oriented diamond particles were obtained only in this dense plasma. From the results of the optical emission spectra of disc-shaped dense plasma, it was found that the concentrations of atomic hydrogen and hydrocarbon radicals were increased with negative bias voltage. As a result, it was suggested that the highly oriented diamonds were obtained by the combination of the high dose of hydrocarbon radicals and the increased hydrogen etching effects.  相似文献   

13.
CVD金刚石涂层中热应力的有限元模拟   总被引:1,自引:0,他引:1  
刘炯  薛屺  陈楠  祝媛媛 《表面技术》2006,35(6):72-74
在CVD涂层系统中,由于各种材料物理性能的差异,涂层在从沉积温度冷却到室温的过程中会产生热应力,影响膜基之间的附着力.为了考察各种因素对产生热应力的影响,利用热固耦合有限元方法分析了不同沉积条件下硬质合金基体上金刚石膜的热应力情况,还讨论了有不同过渡层的情况.对各情况下的轴向、径向和剪切应力做了比较分析.结果发现沉积温度和金刚石膜厚度对热应力影响较大,而过渡层厚度和物理性能对热应力影响不大.  相似文献   

14.
通过自制的MPCVD双基片台设备,在微波功率为1400 W保持不变及中高气压,等离子体功率密度为357.5~807.4 W/cm3,基片温度为850 ± 30 ℃,CH4体积分数为1.0%~1.5%,沉积速率为1~8 μm/h条件下,在直径11.5 mm的硅基片上沉积不同质量的多晶金刚石膜,并通过光谱仪、光学显微镜、拉曼光谱仪对等离子体中的氢原子及含碳基团、多晶薄膜的形貌及质量进行表征。结果表明:随着等离子体功率密度上升,等离子体椭球中的氢原子基团和含C的活性基团强度增加,金刚石膜生长速率大幅度提高,金刚石膜纯度也大幅度提升。在气压为21 kPa,等离子体功率密度为807.4 W/cm3,基片温度为850±30 ℃,生长时间为150 h,CH4体积分数为1.0%及氢气流量为200 mL/min的条件下,金刚石膜的生长速率达到5 μm/h,金刚石膜厚达752.0 μm,金刚石拉曼峰的半高宽为6.48 cm?1,且生长的金刚石膜质量良好。   相似文献   

15.
Diamond film were deposited on the cemented WC + 6% Co substrates by a microwave plasma chemical vapor deposition (CVD) system. The effects of Cu and Cu/Ti as interlayer on adhesion of diamond film were investigated. The surface morphology and composition of the film and microstructure of film/substrate interface were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), electron probe microanalysis (EPMA) and Raman spectrometer, respectively. The adhesion of diamond film was evaluated by indentation adhesion testing. The results show that Cu/Ti would be a suitable interlayer system to improve film adhesion. It was considered that Cu atoms replaced most voids left by leached Co, recovered the surface strength and toughness, and inhibited the diffusion of Co to the substrate surface. Ti atoms act as promoter for diamond nucleation, and the formation of TiC enhanced the adhesion of diamond film. Furthermore, Cu/Ti interlayer system restrained the growth of diamond grain and promoted the formation of nano-crystalline, which increased the contact area of the film/substrate interface.  相似文献   

16.
A method for the growth of Diamond/WC bilayers in a single process is presented with interest for the production of well adhered electrical contacts to diamond surfaces. This process uses a common hot filament chemical vapor deposition (HFCVD) reactor, with W filaments as the source for the deposition of the metallic layer, and H2 and CH4 gasses as the reactive species for the diamond growth. The method begins by vaporizing the filaments in vacuum for a few minutes, followed by the chemical vapor deposition of diamond. The results have shown that by varying the filament vaporization time and temperature it is possible to deposit on the Si substrate tungsten containing coatings of different thicknesses. The process starts by vaporization of naturally oxidized filaments and deposition on the substrate. Afterward, the tungsten oxide carburises to W2C and WC phases. The CVD growth of the diamond layers on these carbide layers is dependent on the CH4/H2 ratios, system pressure and substrate temperature. The seeding of the Si substrates with diamond powder before the CVD process, guarantees that diamond is nucleated inside the metallic carbide layer, anchoring the top nanocrystalline diamond layer.  相似文献   

17.
目的增强金刚石与基体的界面结合能力。方法首先对金刚石粉体进行"除有机物→除油→粗化→烘干"处理。采用自制化学气相沉积装置,研究了以H_2和WF_6为反应气体在金刚石表面CVD法镀覆钨工艺。使用扫描电镜(SEM)、能谱(EDS)、X射线衍射(XRD)、透射电镜(SEM)等检测方法,分析了金刚石粉体镀层钨的微观形貌、成分、组织结构,对镀层包覆金刚石粉体相关性能进行了初步测试。结果在粒径约为223.6mm的金刚石表面获得均匀致密镀覆层的最佳工艺参数为:沉积温度670℃,沉积时间2 min,H_2通入量1 L/min,WF_6消耗量2 g/min。沉积温度为580℃时,获得的均匀致密钨镀层的厚度为150 nm,且镀层杂质含量较少。将镀覆钨的金刚石和普通金刚石分别与铜粉热压烧结后进行抗弯强度测试,结果显示含镀覆钨的金刚石试样抗弯强度提高了38.6%。加入镀钨金刚石压块的热膨胀系数比加入普通金刚石的有所降低,并且加入的镀钨金刚石粉体越多,压块的热膨胀系数越低。结论镀钨后的金刚石颗粒的表面性能得到改善,与基体的结合能力得到提高。  相似文献   

18.
金刚石涂层用硬质合金基体表面预处理研究新进展   总被引:6,自引:0,他引:6  
从孔隙的形成、界面非金刚石物的形成以及较高残余应力等3个不利方面,分析和综述了影响金刚石涂层与硬质合金基体粘结性的主要因素。着重对浸蚀基体表面除去Co相或浸蚀WC相,在基体与涂层之间形成中间过渡层或中间化合物,基体表面机械或热处理等硬质合金基体表面预处理,改善涂层与基体粘结性的3种方法和途径进行了阐述。  相似文献   

19.
采用微波等离子体化学气相沉积法,在过饱和碳离子浓度条件下,在单晶硅衬底上制备了球形结构的多晶金刚石微球,通过控制沉积气压与温度的变化,研究了金刚石由石墨生长区向纳米晶的球形结构、再到具有良好结晶性的金刚石生长区的过渡过程。结果表明:沉积气压与温度的升高导致微球的粒径增大,微球由sp3、sp2键共存相转变为较纯的金刚石相;在一定的碳离子过饱和度和气压、温度范围内,微球的形成主要受二次形核过程的控制。气压和温度升高后,微球呈<110>取向生长,微球的形成主要受(111)面高密度孪晶和层错缺陷的控制,揭示了化学气相沉积金刚石不同生长区内二次形核机制与孪晶层错机制诱导的金刚石微球的生长过程。   相似文献   

20.
采用热丝化学气相沉积法(HFCVD),以甲烷和氢气为反应气体,在综合性能良好的Mo-40%Re(摩尔分数)合金基体上沉积金刚石薄膜.采用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)和显微激光拉曼光谱仪(Raman)分别对金刚石薄膜相组成、表面形貌、晶粒大小和质量等进行检测分析,研究CVD沉积参数,如基体温度(θs)、碳源浓度(R,Cn4的体积分数)和沉积压强(p),对金刚石形核、生长和金刚石成膜的影响.结果表明在合适的基体预处理条件下,当θs=750℃,R=-3%,p=3.5kPa时,薄膜平均线生长速率高达1μm/h,得到的金刚石膜完整致密,晶粒大小均匀,纯度较高,具有明显的(111)织构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号