首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
选用三维五向和三维正交两种编织结构的纤维预制体,采用真空气压浸渗法制备纤维3D-C_f/Al复合材料,研究编织结构对3D-C_f/Al复合材料显微组织和拉伸强度的影响。结果表明:编织结构对3D-C_f/Al复合材料的显微组织与力学性能具有显著影响。其中,三维五向和三维正交C_f/Al复合材料平均致密度分别为97.7%和98.3%,三维五向C_f/Al复合材料存在少量的束间孔洞、气孔缺陷,而三维正交C_f/Al复合材料存在少量纤维团聚缺陷;三维五向C_f/Al复合材料的拉伸强度、拉伸模量及泊松比均明显高于三维正交C_f/Al复合材料的,二者的平均拉伸强度分别为753.5 MPa和644.1 MPa,拉伸模量分别为194 GPa和150 GPa,泊松比分别为0.89和0.04;三维五向C_f/Al复合材料的抗弯强度、弯曲模量均明显低于三维正交C_f/Al复合材料的,二者平均抗弯强度分别为931.8 MPa和1010.3 MPa,弯曲模量分别为134.2 GPa和154.6 GPa。通过对预制体编织结构的设计,可实现3D-C_f/Al复合材料性能设计。  相似文献   

2.
选用M40J碳纤维的2.5D浅交弯联编织预制体为增强体材料,ZL301合金为基体材料,制备纤维体积分数为48%的2.5D碳纤维增强铝基复合材料,2.5D浅交弯联编织预制体的经/纬向纤维比选取54%∶46%、65%∶35%和78%∶22%,研究了不同经/纬向纤维比的2.5D浅交弯联结构C_f/Al复合材料的致密度、微观组织和经纬向力学性能。结果表明,2.5D复合材料的致密度随着经向纤维体积分数的提高而不断下降,经/纬向纤维比为54%∶46%的2.5D-C_f/Al复合材料致密度最大,达到98.5%,组织中无明显浸渗缺陷,浸渗效果较好;经/纬向纤维比对2.5D-C_f/Al复合材料经/纬向抗拉强度影响较大,经/纬向纤维比为65%∶35%的2.5D-C_f/Al复合材料经向、纬向抗拉强度分别为380.6、245.6MPa,具有最佳的综合力学性能,其拉伸断口参差不齐,界面结合强度适中。  相似文献   

3.
以石墨纤维2.5D织物为增强体,ZL301铝合金为基体,采用真空气压浸渗法制备了碳纤维体积分数为42%的2.5D-C_f/ZL301复合材料,研究了纤维预热温度对复合材料致密度和力学性能的影响。结果表明,随着纤维预热温度的升高,2.5D-C_f/Al复合材料的致密度呈现先增加后减少的趋势;而复合材料室温抗拉强度随纤维预热温度提高而持续下降,这是因界面反应加剧而导致的界面结合过强而导致的复合材料力学性能恶化。  相似文献   

4.
选用先驱体法制备的直径10~15μm束丝SiC纤维作为增强体材料,采用真空气压浸渗法制备了SiCf体积分数为40%的连续SiCf/Al复合材料,研究纤维预热温度对复合材料显微组织与力学性能的影响。结果表明:复合材料中原局部存在少量团聚的SiC纤维束随着纤维预热温度的提高,纤维团聚减少,分布更趋于均匀;而复合材料致密度和抗拉强度随纤维预热温度的升高先逐渐增加后缓慢降低;其中,在纤维预热温度为500℃、浸渗温度为730℃、浸渗压力为7 MPa和保压时间为5 min的浸渗工艺条件下所制备的连续SiCf/Al复合材料的致密度为97.24%,抗拉强度达到768.9 MPa。  相似文献   

5.
选用M40石墨纤维(6K)作为增强体材料,采用真空气压浸渗法制备了纤维体积分数为40%、基体合金分别为ZL102、ZL114A、ZL205A及ZL301合金的单向连续Cf/Al复合材料,研究了基体合金对连续Cf/Al复合材料的致密度和抗拉强度的影响。结果表明,在预热温度为550℃、浸渗温度为730℃、浸渗压力为7 MPa、保压时间为20min的条件下,4种复合材料中,M40/ZL301复合材料的致密度最大,为99.9%,纤维在基体中的分布也最均匀;抗拉强度最高达670.2MPa,是最低的M40/ZL102复合材料的639%;其拉伸断口呈典型的韧性断裂特征。  相似文献   

6.
以石墨纤维三维五向织物为增强体,铝合金ZL301为基体,采用真空辅助压力浸渗法制备了三维五向增强Cf/Al复合材料,研究了不同预热温度制备的复合材料微观组织特征和界面反应程度,测试了复合材料在室温和高温下的拉伸力学性能并分析了其断口形貌。结果表明:复合材料相对致密度随预热温度提高而增加,纤维局部偏聚现象也明显减少,与此同时,界面反应物Al_4C_3相随预热温度提高而显著增多,530~570℃复合材料室温强度随组织缺陷减少而增大,570~600℃复合材料室温强度随界面反应程度增大而显著降低;高温(300℃)强度随预热温度提高而增加,适当提高界面反应程度有利于提高复合材料高温力学性能,高温拉伸中基体合金回复软化和界面结合强度弱化促进了复合材料断裂过程中的纤维拔出与界面滑移。  相似文献   

7.
三维编织碳纤维增强铝基复合材料(3D-Cf/Al复合材料)具有耐冲击、不分层、抗开裂、耐疲劳、整体性强等优点,但浸渗过程中存在难以浸渗和过度界面反应等问题。在采用真空气压浸渗制备单向排布Cf/Al复合材料的工艺试验基础上,进行了三维五向编织Cf/Al复合材料的真空气压浸渗工艺研究,得到了3D-Cf/Al复合材料真空气压浸渗成形工艺参数。在预热温度为500~550℃、浸渗温度为730℃、保压时间为20min时,制备出的3D-Cf/Al复合材料浸渗良好,其致密度达到95.88%,抗拉强度达到782.33 MPa。  相似文献   

8.
选用浅交弯联、浅交直联、层联结构的M40碳纤维机织物为增强体材料,采用真空气压浸渗法制备纤维体积分数为48%,基体合金为ZL301的2.5D编织M40碳纤维增强铝基复合材料(2.5D-Cf/Al),研究织物结构对2.5D-Cf/Al复合材料微观组织与力学性能的影响。结果表明:复合材料的致密度随着织物结构的改变而变化,其中浅交直联结构的2.5D-Cf/Al复合材料的致密度最大为98.5%;织物结构对复合材料的经向拉伸强度有较大影响,浅交直联结构的2.5D-Cf/Al复合材料经向拉伸强度最高,为414.85 MPa,其拉伸断口参差不齐,呈现出适中的界面结合强度;织物结构对复合材料纬向拉伸强度的影响较小,拉伸断口形貌差异不明显。  相似文献   

9.
选用ZL301合金为基体材料,采用2.5D浅交直联、三维正交和三维五向等3种结构编织了M40J碳纤维预制体,采用真空压力浸渗法制备纤维体积分数为50%的3D-C_f/Al复合材料。主要研究了织物结构对C_f/Al复合材料微观组织与压缩强度的影响。结果表明,织物结构对C_f/Al复合材料的致密度、微观组织和压缩性能影响较大。其中三维正交结构的C_f/Al复合材料的致密度和压缩强度最大,分别为99.2%和417MPa;而2.5D浅交直联结构的C_f/Al复合材料的致密度和压缩强度最小,分别为95.3%和99.8MPa。  相似文献   

10.
以石墨纤维2.5维机织物为增强体,铝合金ZL301为基体材料,采用真空辅助压力浸渗法制备了2.5维织物Cf/Al复合材料,研究了3种织物预热温度下制备的复合材料相对致密度和微观组织形貌,分析了其界面产物组成与界面结构特征,测试了其经、纬向准静态拉伸变形力学行为并分析了其断口形貌。结果表明:复合材料织物的细观结构完整,内部纤维分布均匀,致密度随预热温度提高而略有上升,界面棒状产物为Al4C3相,其相对含量随预热温度的提高而增加,从而引起复合材料经向和纬向力学性能的下降。复合材料经向拉伸强度高于纬向拉伸强度,且其应力-应变行为呈现出显著的非线性特征,复合材料经向和纬向拉伸变形过程均可划分为3个阶段:初始弹性变形阶段、中间弹塑性变形阶段和最终损伤与断裂阶段。  相似文献   

11.
采用真空气压浸渗法制备了纤维体积分数51%、致密度≥97%的三维五向和三维正交编织M40碳纤维增强铝基复合材料(3D-C_f/Al),分析了复合材料中微观缺陷的形貌、形成机理及其控制手段,并对比了2种编织结构对复合材料微观缺陷形成的影响。结果表明:复合材料中的缺陷均是微米级的微观缺陷,主要有束内孔隙、局部纤维偏聚及在基体集聚处的冷隔、显微缩孔及微夹杂等,其中三维正交C_f/Al复合材料束内孔隙及束间孔隙较三维五向C_f/Al复合材料少,而局部纤维偏聚现象较三维五向C_f/Al复合材料严重,造成其缺陷差异的主要原因在于其纤维预制体编织结构的差异,通过提高预热温度可以显著减少复合材料内部的孔隙缺陷及局部纤维偏聚现象。  相似文献   

12.
选用单向排布SiC纤维预制体为增强体材料,ZL301合金为基体材料,纤维预热温度选取500、530、550℃,制备纤维体积分数为40%的连续SiCf/Al复合材料,研究了不同纤维预热温度对连续SiC_f/Al复合材料的相组成、纤维损伤和力学性能的影响。结果表明,随着纤维预热温度上升,纤维的损伤越严重,预热500℃的纤维抗拉强度最高,为1 827MPa,是SiCf纤维原丝强度的77.7%,预热550℃时的纤维抗拉强度最低,仅为1 360MPa;纤维预热温度对连续SiC_f/Al复合材料的力学性能有较大影响,纤维预热温度为530℃时复合材料的抗拉强度最高,为483MPa,断口呈现韧性断裂特征,表现出适中的界面结合强度。  相似文献   

13.
以M40J碳纤维的2.5D浅交直联编织预制体为增强体,ZL301合金为基体材料,采用真空压力浸渗法,制备纤维体积分数50%的2.5D碳纤维增强铝基复合材料;研究2.5D浅交直联结构复合材料的致密度和微观组织,在室温、350℃和400℃环境下进行经向拉伸力学性能测试并分析其变形断裂行为。结果表明:2.5D复合材料的致密度较高达到96.2%,细观结构完整,纤维排布均匀,微观组织无明显铸造缺陷,界面上大多数区域较为干净,存在棒状的Al_4C_3界面相;2.5D-C_f/Al的室温、350℃和400℃的经向拉伸强度分别为531、451和408 MPa,材料的高温强度损失率仅为23%;其应力-应变曲线呈现明显非线性特征,复合材料的室温和高温拉伸断裂过程可以分为3个阶段,即基体承载阶段、纤维承载阶段、损伤与断裂阶段。  相似文献   

14.
以石墨纤维三维五向织物为增强体,铝合金ZL301为基体材料,采用真空辅助压力浸渗法制备了三维五向增强Cf/Al复合材料,研究了不同温度制备的复合材料微观组织特征和界面反应程度,测试了复合材料在室温和高温下的拉伸力学性能并分析了其断口形貌。结果表明:复合材料相对致密度随制备温度提高而增加,纤维局部偏聚现象也明显减少,与此同时,界面反应物Al4C3相随制备温度提高而显著增多,530℃到570℃复合材料室温拉伸极限强度随组织缺陷减少而增加,570℃到600℃复合材料室温极限拉伸强度随界面反应程度增大而显著降低;高温拉伸极限强度随制备温度提高而增加,适当提高界面反应程度有利于提高复合材料高温力学性能,高温拉伸中基体合金回复软化和界面结合强度弱化促进了复合材料断裂过程中的纤维拔出与界面滑移。  相似文献   

15.
选用M40J碳纤维、KD-Ⅱ型碳化硅纤维和Nextel610型氧化铝纤维为增强体材料,采用真空压力浸渗法制备纤维单向排布,基体合金为ZL301的连续纤维增强铝基复合材料,研究增强纤维对复合材料致密度、界面及力学性能的影响。结果表明:增强纤维对复合材料的致密度有着明显影响,C_f/Al复合材料的致密度最大,达到99.9%,密度最小,仅为2.248g/cm~3,且其纤维排布均匀,组织缺陷最少;不同增强纤维与基体会发生不同程度的界面反应,最后表现为不同的纤维损伤程度,界面层厚度和界面相的大小,Al_2O_3f/Al复合材料未发现明显界面层,SiC_f/Al复合材料和C_f/Al复合材料的界面层厚度分别为275.3 nm和327.4 nm,界面上都发现有短棒状的Al_4C_3相;SiC_f/Al,C_f/Al和Al_2O_3f/Al复合材料的拉伸强度分别为780.3 MPa,670.2 MPa和587 MPa,组织缺陷、纤维损伤和界面结合强度是影响复合材料强度的主要因素。  相似文献   

16.
选用Nextel610型Al2O3纤维作为增强体,采用真空气压浸渗法制备了纤维体积分数40%、基体合金分别为1A99、ZL210A、ZL301及7075合金的单向连续Al2O3f/Al复合材料,并用NaOH溶液萃取出Al2O3纤维,研究了基体合金对连续Al2O3f/Al复合材料的致密度、纤维损伤及拉伸强度的影响。结果表明:基体合金对连续Al2O3f/Al复合材料的致密度和微观组织有明显影响,其中连续Al2O3f/ZL301复合材料致密度最高为99.2%,组织缺陷最少;连续Al2O3f/1A99复合材料致密度最低为96.8%,这种差异是由于不同基体与纤维之间润湿性不同导致的。不同基体与纤维发生了不同程度的界面反应,最后表现为对纤维的损伤程度不同。连续Al2O3f/1A99、Al2O3f/ZL210A、Al2O3f/ZL301及Al2O3f/7075四种复合材料的拉伸强度分别为465MPa、479MPa、680MPa和389MPa,缺陷、纤维损伤和界面结合强度是影响连续Al2O3f/Al复合材料强度的主要因素。  相似文献   

17.
为研究纤维编织结构对三维编织Cf/Al复合材料弯曲性能的影响,选用TZ700S碳纤维作为增强纤维,通过加入轴纱改变编织结构,制备了三维四向和三维五向、全五向3种编织结构的纤维预制体。通过压力浸渗法制备了基体合金为7075铝合金的3D-Cf/Al复合材料,测试了弯曲力学性能并观察了断口的形貌。结果表明,3D-Cf/Al复合材料的弯曲性能高于基体弯曲性能,其中三维四向Cf/Al复合材料的弯曲强度为346.7 MPa。加入轴纱后的三维五向、全五向Cf/Al复合材料的弯曲性能和断裂应变均高于三维四向Cf/Al复合材料,而加入更多轴纱的全五向复合材料的结构性能更好,弯曲强度为399.7 MPa。  相似文献   

18.
选用三维五向编织结构的SiC纤维为增强体,采用真空辅助压力浸渗法制备纤维体积分数为48%的3D-SiC_f/ZL301复合材料,研究了浸渗保压时间对3D-SiC_f/Al复合材料微观组织及力学性能的影响。结果表明,复合材料的致密度随着保压时间的延长而增大,达到99.0%,延长保压时间可以减少复合材料纤维束内空隙和团聚现象;而复合材料的抗拉强度则随着保压时间的增加呈先上升后下降的趋势,这是由于过强的界面反应导致复合材料的力学性能恶化。  相似文献   

19.
选用的增强体为先驱体法制备的束丝SiC纤维(KD-Ⅱ型),采用真空气压浸渗法制备体积分数为40%、基体合金分别为ZL102、ZL114A及ZL205A合金的连续SiCf/Al复合材料,并用Na OH溶液萃取出SiC纤维,研究基体合金对连续SiCf/Al复合材料微观组织和拉伸强度的影响。结果表明:基体合金对连续SiCf/Al复合材料的微观组织及力学性能有显著地影响。其中,SiCf/ZL102复合材料纤维分散均匀和致密,SiCf/ZL114A复合材料存在少量的纤维团聚,而SiCf/ZL205A复合材料存在明显的偏聚和微孔缺陷;基体ZL102、ZL114A及ZL205A复合材料的平均拉伸强度分别为615.7、475.9和385.1 MPa,差别较大;同时,从基体ZL102、ZL114A及ZL205A的复合材料中萃取出SiC纤维的平均拉伸强度分别为原丝的50.94%、41.51%及25.09%;在浸渗过程中,纤维损伤和分布是导致不同基体复合材料力学性能差异的关键因素。  相似文献   

20.
短碳纤维增强铝基复合材料的挤压浸渗工艺   总被引:12,自引:4,他引:12  
采用挤压浸渗法制备了短碳纤维增强铝基复合材料 ,研究了浸渗压力、铝液浇注温度、纤维预热温度等对复合材料组织的影响。结果表明 :合适的工艺参数为铝液浇注温度 740~ 80 0℃ ,预制块预热温度 35 0~ 40 0℃ ,浸渗压力 2~ 5MPa;在氩气保护下 ,无须对碳纤维表面进行涂层处理 ,可获得组织均匀的铝基复合材料。加入Al2 O3 颗粒可以改善纤维分布的均匀性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号