首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
永磁电磁轴承自检测原理   总被引:1,自引:0,他引:1  
为了降低磁悬浮轴承的制造成本,提高磁悬浮系统的动态性能,提出了自检测磁悬浮轴承系统.该自检测系统从电磁轴承控制线圈两端提取随位移变化的电感电压(电流)信号,作为反馈信号,构成伪微分反馈(PDF)控制的闭环自检测磁悬浮轴承系统.试验结果表明,该自检测磁悬浮轴承系统具有很强的鲁棒性.  相似文献   

2.
自感式磁浮轴承位置传感器   总被引:1,自引:0,他引:1  
根据电磁轴承的工作原理及结构特点,提出利用磁轴承线圈的差动电感替代电磁轴承系统中的涡电流位置传感器,简化了系统结构。推导了该自感型传感器的传输关系.通过实验得到了它的线性度.同时,可排除电磁场对涡电流位置传感器的影响.论证了该自感型传感器在电磁轴承系统中的可行性,提高了系统性能。  相似文献   

3.
电磁轴承最优刚度与系统结构参数关系的研究   总被引:9,自引:1,他引:8  
电磁轴承系统中最重要的两个机电结构参数是定转子间气隙和定子静态偏置磁通密度,影响着支承刚度和承载力的基本特征;轴承的支承刚度大小和承载力的线性范围决定了轴承的基本性能。在Maxwell电磁力公式基础上,研究了这两个机电结构参数与轴承的基本性能的关系,得到了电磁力与位移之间线性与非线性关系的解析界限,并推导了在线性控制系统作用下,相对不同电磁轴承系统结构参数的最优线性范围和对应的最优刚度。  相似文献   

4.
电磁轴承动刚度的自动测量   总被引:4,自引:1,他引:3  
针对电磁轴承动刚度难以测量的问题,构建了一套简单的刚度测量系统用来自动测量电磁轴承的动刚度。该系统采用电磁轴承的数字控制器、功放、电磁铁作为激振器,电磁轴承的电涡流传感器作为拾振器,自行研制的测量分析系统作为测量分析工具。给出电磁轴承动刚度的测量结果。测量结果表明,该系统能较准确测量电磁轴承的动刚度。此测量系统还可以用于其他轴承刚度的测量,也可用于系统辨识。  相似文献   

5.
分析了激光跟踪系统中两回转轴的轴承内圈跳动引起的测量误差,建立了误差的数学模型。根据该模型绘制了测量误差在测量空间的分布图。指出由轴承跳动引起的测量误差不可忽略。当轴承跳动量一定时,最大测量误差位于俯仰角等于π/2的平面上。根据该误差模型,跟踪系统的设计者可以预先估计不同精度等级的轴承跳动引起的误差大小,以选择适合系统设计精度的轴承等级。同时,该模型还指出使用跟踪系统进行测量时,应尽量避免将被测点设置在系统俯仰角等于π/2的平面上,以获得高精度的测量结果。  相似文献   

6.
往复运动位移的自动测控系统是轮胎动态实验台的核心部分,它直接影响实验台的性能。文中提出一种由磁致伸缩线性位移传感器、MAXl95A/D转换器和AT89C52单片机组成的往复位移自动测控系统。现场使用和实验表明,该系统的测量误差小于1mm,具有测量精高、可靠性好和环境适应性强等优点。  相似文献   

7.
电磁轴承系统位移传感器的分析与研究   总被引:4,自引:1,他引:3  
讨论了位移传感器对电磁轴承系统控制精度的影响,在此基础上提出一种差动电感式位移传感器的设计方案,通过试验验证,这种传感器使电磁轴承系统的结构简单化,提高了系统的稳定性,对进一步研究电磁轴承系统具有很重要的参考价值。  相似文献   

8.
减速器的扭矩输入输出特性是衡量电动舵机性能的重要指标.在测量实验中,由于机械安装,轴承摩擦和电机驱动器非线性等原因造成的误差会折算到扭矩测量结果中,导致扭矩测量误差并降低精度.以减速器为研究对象,通过动态方程建立电动舵机系统的数学模型,提出将扭矩测量误差进行分离,令机械安装与轴承摩擦作为已知的系统误差,最终得到电机驱动器误差的观点,采用基于最小二乘的曲线拟合算法,对实测静态和动态数据进行预处理从而对扭矩测量误差进行补偿.实验结果说明此方法能够补偿电机驱动器非线性引入的测量误差从而提高测量精度.  相似文献   

9.
《机电工程》2021,38(6)
针对基础激励会导致转子碰撞保护轴承,甚至引起系统失稳的问题,对电磁轴承-柔性转子系统在基础平动激励条件下的振动位移响应特性及其控制进行了研究。首先,在基础坐标系中建立了电磁轴承-柔性转子系统的运动方程;然后,以基础加速度为输入信号和LMS变步长算法设计了自适应控制器,根据位移差值自适应调节其输出信号,抑制了系统在该种扰动下的振动位移响应;接着进行了数值仿真,分析了基础平动激励条件下电磁轴承-柔性转子系统的振动位移响应特性,并验证了所设计的自适应控制器在基础平动激励条件下对电磁轴承-柔性转子系统振动的控制效果。研究结果表明:在基础平动激励条件下,电磁轴承-柔性转子系统的振动位移响应与激励频率、激励幅值、激励相位等有关;该自适应控制器能够有效地抑制基础平动激励条件下电磁轴承-柔性转子系统的振动位移响应。  相似文献   

10.
为描述光学精密位移传感器测量高端轴承球体圆度过程中,光轴与轴承球体赤道面存在一定的角度时对测量结果的影响,讨论了这种装置的工作原理及可实现的测量精度,从理论上分析了有一定倾斜时测量值与实际值之间的误差,同时通过实验测量,验证了该装置在测量轴承球体时测量误差与倾斜角之间的关系。评估了利用该装置测量高端轴承球体几何量,如圆度等时的精度上限,建立了一套利用精密光学位移传感器测量轴承球体几何量及误差评定的方法。该装置及测量方法可用于生产线上的在线检测。  相似文献   

11.
结合自由活塞斯特林发动机的结构特点,提出了采用应变片响应板弹簧变形来动态测量活塞位移的方法。根据应变片的电阻应变效应与应变仪的电桥原理,建立了一套应变片测量位移的动态标定试验系统,将动态标定数据与静态标定数据进行了比较分析。试验结果表明,应变片测量位移的方法存在一定的正反向、动静态差异,应变片的粘贴位置也会直接影响测量准确性。基于应变片传感器体积小,与板弹簧结合粘贴无需占用专门的空间,通过标定校准和合理的安装位置,仍然是一种较好的位移测量传感器。  相似文献   

12.
为了简化六自由度并联机构的参数标定过程,提高标定效率,降低标定成本,提出了基于正交位移测量系统的位姿测量装置及方法。首先,研究了该装置的位姿解算方法,利用空间解析几何的方法,求解其运动学正解与逆解。其次,利用微小位移合成法,建立了并联机构及正交位移测量系统组合体的误差模型。然后,基于误差模型,构建了组合体参数误差辨识的最优化问题数学模型,其中,传感器示值的平方和最小为目标函数,组合体的结构参数误差为设计变量。最后,利用正交位移测量系统对六自由度并联机构位姿进行测量,利用OASIS奥希思软件直接搜索出参数误差最优解,将其补偿到并联机构控制系统中,完成并联机构的参数标定。标定前后位姿误差对比表明:最大位置误差降低了58%~96%,最大姿态误差降低了92%~97%。利用正交位移测量系统进行并联机构参数标定,不仅可有效提升并联机构的定位精度,还可有效简化标定工作,提升标定效率,降低标定成本。  相似文献   

13.
为进行动态测试系统的误差溯源研究,以一种差动互感电感式位移传感器动态测试系统为研究对象,分析各部分的动态测试特性,分别建立了各环节的单元传递函数与误差函数,并根据全系统动态测试精度理论,建立了该系统总的传递链函数及误差传递”白化”模型。  相似文献   

14.
根据滚珠丝杠一端止推和两端止推两种方式,基于弹性力学原理建立了进给系统的轴向刚度模型和扭转刚度模型。分析了刚度对进给系统死区误差的影响,在对轴向变形引起的位移偏差和扭转变形引起的角位移偏差分析计算的基础上,给出了刚度引起的死区误差计算方法。建立了包含刚度环节的进给系统模型,通过仿真对系统动、静态性能和稳态误差进行了分析。为减小刚度因素对系统性能的影响,提出前馈控制方法进行刚度补偿,仿真结果表明该方法提高了系统的动、静态性能,使系统稳态误差减少了58%以上。  相似文献   

15.
时栅数控转台空间回转位置预测方法研究   总被引:4,自引:0,他引:4  
时栅传感器利用时空变换技术将空域信息变换到时域,以时间测量空间位移.为了研制高精度时栅数控转台,减少动态位置反馈误差,提出了一种回转位置预测测量新方法,利用时空变换技术将时域信息返回到空域.利用时间序列理论对时栅测量值进行建模,从而预测出数控转台未来一段时间内的位置值,并利用当前测量值对前一次的预测误差进行实时修正.介绍了测量数据建模方法和预测系数估计算法.为了验证位置预测方法的有效性,设计了一套动态实验系统.实践证明,数控转台的角位移预测误差为±2″,实现了精密位置预测.  相似文献   

16.
位置敏感探测器(Position Sensitive Detector,PSD)是一种高精度的二维位移测量传感器,利用三片二维PSD的组合实现空间六自由度相对运动的位移和角度测量。测量系统主要包括三片PSD传感器(包括PSD光敏面和发光管)、低噪声的信号调理和AD采集电路,采用三片PSD正交布局方案,通过PSD光敏面的光点位置计算相对运动的位移和角度。设计了六自由度的PSD标定测试系统,用于PSD测量系统中心偏移和发光管安装误差的标定测试。测试结果表明,PSD测量系统的测量范围优于位移±10mm、角度±2.5°,标定后PSD测量系统的噪声误差为位移0.1mm、角度0.02°,测量系统的绝对位移误差小于0.5mm、角度误差小于0.14°,满足系统0.5mm和0.5°的指标要求。此外,对PSD传感器的环境适应性进行了评估。PSD测量系统具有量程宽、精度高、线性度好的优点,成功应用于天舟1号货运飞船微重力主动隔振装置的相对运动测量中。  相似文献   

17.
Addressing the importance of displacement measurement of structural responses in the field of structural health monitoring, this paper presents an autonomous algorithm for dynamic displacement estimation from acceleration integration fused with displacement data intermittently measured. The presented acceleration integration algorithm of multi-rate Kalman filtering distinguishes itself from the past study in the literature by explicitly considering acceleration measurement bias. Furthermore, the algorithm is formulated by unique state definition of integration errors and error dynamics system modeling. To showcase performance of the algorithm, a series of laboratory dynamic experiments for measuring structural responses of acceleration and displacement are conducted. Improved results are demonstrated through comparison between the proposed and past study.  相似文献   

18.
采煤机截割高度的测量及其误差分析是实现综采工作面自动化的一项重要研究内容。本文针对机身姿态传感器和摇臂摆角传感器测量方案、机身姿态传感器和调高油缸位移传感器测量方案,分别建立了采煤机截割高度测量模型。利用函数误差公式,推导了测量误差模型。以MG1000/2660-WD型采煤机为例,分析了截割高度测量误差分别随俯仰角、摇臂摆角和调高油缸位移的变化规律,得到了两种测量方案截割高度测量误差的最大值的位置。根据算例分析的结果可知,摇臂摆角传感器和调高油缸位移传感器的精度对测量误差的影响较小,机身姿态传感器的精度将决定截割高度测量误差的大小。最后,以采煤机截割高度测量误差小于5 cm为例进行分析,得出两种测量方案下各传感器的精度要求:摇臂摆角传感器精度为0.022°和机身姿态传感器的俯仰角最大动态误差小于0.16°(1 h内),调高油缸位移传感器精度为1 mm和机身姿态传感器的俯仰角最大动态误差小于0.14°(1 h内)。  相似文献   

19.
动态测量下的谐波误差成分是制约高精度、高分辨率的时栅角位移传感器在动态测量领域运用的主要原因之一。针对动态测量下时栅角位移传感器中的谐波抑制难题,首先简述了时栅角位移传感器的系统模型,其次建立了时栅角位移传感器的动态误差数学模型,之后解释了传感器的动态误差产生机理,阐述了自适应卡尔曼滤波的基本原理,最后构建了基于自适应卡尔曼滤波的时栅角位移传感器的动态误差抑制模型。通过仿真分析证明了时栅角位移传感器在匀速和变速运行情况下,经自适应卡尔曼滤波后,动态误差均降低了约70%,且随着传感器转速的提高,对谐波误差的抑制效果越明显。在实验运用中,该滤波算法对时栅角位移传感器的测量值有很好的实时预测性,传感器能够更快速且稳定运行,在100 r/min的转速下测量误差降低约80%。结果证实了自适应卡尔曼滤波在时栅角位移传感器的动态谐波误差抑制中有着显著的作用,能极大地提高传感器的动态测量精度。  相似文献   

20.
反射式光纤位移传感器在测量牙齿咀嚼过程中的应用   总被引:3,自引:1,他引:3  
反射式光纤位移传感器具有对测量环境的要求低、适用于各种常规方法无法满足的特殊场合、测量范围大和测量精度高等优点.本文简述了该传感器的工作原理,针对牙齿咀嚼过程测量和在口腔中工作的特殊要求设计了专门的光纤头和反射面,建立了一套测量该过程的装置,对该测量系统进行了校准,对牙齿咀嚼过程进行了实时测量,得到了一组人体牙齿咀嚼状况下的实时位移的测量结果,在牙医界第一次实现了牙齿咀嚼过程的动态实时测量.文中讨论了口腔这一特殊的测量环境和一些影响测量精度的因素,在实测中摸索了一些减小误差的方法,最后对测量误差作了分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号