首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
机床主轴系统动态特性直接影响铣削稳定和表面加工质量,而铣削状态下主轴系统动态特性与静止或空转状态下存在差异。针对此问题,建立了铣削工况下主轴系统和结合面动力学耦合模型,获得铣削工况下主轴系统动态特性,并通过铣削过程中机床主轴系统动态特性实验测试进行验证,将静止状态与铣削工况进行对比,预测结果误差平均降低了11.35%。实验结果表明,径向铣削载荷和转速削弱了结合面的刚度特征和系统动态特性,而轴向铣削载荷增强了结合面的刚度特征和系统动态特性,影响最为明显的是主轴转速,其次为径向铣削载荷,然后为轴向铣削载荷。研究结果为铣削状态下主轴系统动态特性和铣削稳定性预测提供了理论支持。  相似文献   

2.
为建立高速旋转状态下的主轴—刀柄结合面刚度模型,提出了经典弹性理论和吉村允孝积分法相结合的半解析方法,求解在高速旋转状态下的主轴一刀柄结合面刚度.采用文献[2]的实验数据验证了该方法的有效性.在此基础上建立了在高速旋转状态下的主轴—刀具耦合系统的动力学模型.采用基于Riccati变换的整体传递矩阵法,对主轴—刀具耦合系统的动态特性进行了分析.考察了主轴转速软化结合面刚度因素对系统动态特性的影响.通过对比说明,高速旋转产生的离心力对主轴—刀具耦合系统的动态特性有较大影响;所提的计算模型和方法可以实现高速旋转状态下的主轴刀柄结合面刚度的求解.  相似文献   

3.
为揭示刀柄—主轴结合面接触状况对高速主轴系统动态特性的影响,在考虑其接触应力和刚度动态变化的基础上,基于阻抗子结构耦合法建立了主轴—拉杆双转子动力学模型,并对拉杆拉力和动态夹紧力分别对结合面刚度特性的影响,以及对应的刚度变化对双转子系统频率特性的改变进行了仿真。结果表明,初始拉紧力和动态夹紧力都能提高结合面刚度,且动态夹紧力的提升程度更大,但高速时的刚度特性却由刀柄和主轴的相对离心膨胀量之差决定,呈下降趋势;考虑拉杆时主轴系统的频率显著降低,说明拉杆为一薄弱点;小幅变化的拉紧力对系统频率特性影响不大,说明该数量级的拉紧力已足够高,且主轴频率对刀柄—主轴结合面的刚度变化并不敏感。  相似文献   

4.
为了准确预测机床的加工空间动态特性,首先,建立双转台五轴机床不同加工空间的动力学模型和Kriging预测模型;其次,根据试验模态分析结果,修正了机床滑动结合面的刚度,分析了81个工作位置的机床模态;最后,选取机床动态特性变异函数,基于三维Kriging预测模型分析了双转台五轴机床不同加工空间的系统固有频率。结果表明:随着摆台摆角的变化,双转台五轴机床加工空间中的系统固有频率变化范围为46.2~52.9 Hz;当摆台摆角为0°时,系统固有频率最小;当摆台摆角为45°时,振动幅值最大;机床的加工空间动态特性预测能够为加工路径规划和刀具姿态选择提供技术支持。  相似文献   

5.
针对机床滑动结合面动态特性参数识别困难和现有方法模型复杂、计算量大等问题,提出了基于实验模态分析和响应面法的动态特性参数优化识别方法。通过试验设计获取样本点构造滑动结合面的多项式响应面模型,以响应面的计算结果与实验模态分析结果的相对误差构造目标函数,采用自适应模拟退火算法优化求解,从而识别出滑动结合面的动态特性参数。以机床动态特性分析实验台上立柱导轨与滑座间的滑动结合面为实例进行了建模、实验、参数识别等分析。结果表明,采用所提出的方法可实现较高的识别精度,可显著提高识别效率。  相似文献   

6.
以零传动滚齿机YK3610为例,针对加工系统建立弹簧系统动力学模型,并以此通过分析建立其加工系统的数学模型;运用动态测试系统对加工系统的模型进行试验研究,试验数据表明,该模型可预测该滚齿机加工系统动力学固有性能,而且可以通过优化主轴,改善主轴刚度的方式来提高加工系统的动态特性.为了改善滚齿机床加工系统的动态特性,保证滚齿机加工精度,最后提出了提高零传动加工系统刚度的基本措施.  相似文献   

7.
机床的结合面是整机动态特性的薄弱环节。应用实验测试和计算机仿真,对机床结合面的动态特性进行研究,以提升整机的动态性能。针对磨床中螺栓连接的关键结合面,建立考虑法向和切向刚度的三维接触刚度模型。将实验测试结果与有限元分析相对比,验证所建结合面模型的正确性。应用该模型,采用增加螺栓个数及提高螺栓预紧力等方法,改进结合面设计,分析改进后的整机动态特性。该方法实现了机床整机结合部的非线性特性的合理处理,以支持机床设计中整机性能的预测。  相似文献   

8.
针对现有的基于响应耦合子结构法(RCSA)的刀尖点频响函数预测方法需要辨识主轴-刀柄、刀柄-刀具结合面参数以及需要自制刀柄模型等引起的预测误差和预测过程复杂等问题,提出一种改进的基于RCSA的铣刀刀尖点频响函数预测方法。该方法首先改进已有的子结构划分方法,将机床-主轴-刀柄-刀具系统划分为机床-主轴-刀柄-部分刀杆、剩余刀杆和刀齿三个子结构;然后改进主轴-刀柄处转动频响函数的计算方法,通过铣刀的模态锤击实验采用反向RCSA和有限差分法计算机床-主轴-刀柄-部分刀杆结构的转动频响函数,并基于Euler梁模型计算出剩余刀杆、刀齿子结构的频响函数;最后将三个子结构的频响函数耦合确定刀尖点的预测频响函数。以一立式加工中心为研究对象,应用所提出的方法对铣刀刀尖点的频响函数进行了预测,并与其实测频响函数进行对比。对比结果表明:刀尖点的预测频响函数与实测频响函数符合程度较高,其预测、实测前三阶固有频率之间的误差在6.9%以内,所提出的方法可行有效、简单方便,且可直接基于铣刀的模态实验计算主轴-刀柄的频响函数,避免了相关结合面参数的辨识和刀柄模型的制作。  相似文献   

9.
基于模态试验的机床导轨滑块结合面的参数识别研究   总被引:1,自引:0,他引:1  
机床的整机动态特性在很大程度上取决于机床导轨的结合面特性,目前对于机床导轨特性参数的获得常常采用动态测试的方法.针对XH6650中导轨结合面参数的测试,提出单自由度分量分析法对机床滚动导轨进行模态测试分析.测试中分别对水平和竖直方向激励,测试传递函数,从而识别出导轨结合面的特性参数.  相似文献   

10.
针对微机电陀螺耦合刚度的辨识,提出了以驱动轴、检测轴、驱动-转动耦合和驱动-检测耦合频率响应特性为基础的耦合刚度辨识方法。设计了一种驱动轴和检测轴双向位移解耦的双质量线振动微机电陀螺,基于经过简化的梁的刚度特性建立了微陀螺平面运动动力学方程,导出了结构在存在耦合刚度情况下驱动轴、检测轴、驱动-转动耦合和驱动-检测耦合的传递函数。根据耦合传递函数把刚度耦合产生的根源定位到特定的几组梁之间的刚度误差。通过驱动-转动耦合与驱动轴幅频特性之比辨识出驱动-转动耦合刚度系数,通过驱动-检测耦合与检测轴幅频特性之比辨识出转动-检测耦合刚度系数。实验测试了设计加工的微陀螺的频率响应特性,利用提出的耦合刚度辨识方法得到陀螺的驱动-转动和转动-检测耦合刚度系数分别为0.14N和0.054 33N。得到的耦合刚度的辨识结果可为微陀螺梁刚度的激光修调提供参数依据。  相似文献   

11.
为解决航空航天制造领域面临的关键问题以及提高机床行业的服务能力,机床行业提出建设航空航天制造领域高档数控机床创新能力平台。总结了创新平台的基础装备制造及高档数控机床的四个方面研究进展,包括电主轴单元技术(高速主轴刀柄刀具系统动力分析、数字化仿真和样机模态验证分析)、机床设计(直线轴进给系统刚柔耦合机电耦合动力学、多轴联动与高速五坐标混联加工装备、摆动/回转进给系统的机电耦合动力学模型验证分析、MTC1000镗铣磨复合加工中心结构创新设计)、机床控制(高速启停残留振动抑制技术验证分析)和机床验证(航空航天结构件高速加工现场的数据采集、映射与存储技术分析)。最后展望了基础装备制造和高档数控机床的发展方向。  相似文献   

12.
In addition to the precise kinematic motions of the machine tools and spindles, machining accurate parts necessitates controlling the dynamic behavior of the tool tip with respect to the workpiece. High-fidelity models of tool-tip dynamics can be used to select operating parameters that improve the accuracy by reducing the effect of vibrations. To effectively model the tool-tip dynamics for arbitrary tool-and-holder combinations using the receptance coupling substructure analysis (RCSA) technique, highly accurate and numerically efficient models of the tool–holder dynamics are needed. In this paper, we present a tool–holder model that incorporates a spectral-Tchebychev technique with the Timoshenko beam equation to obtain a completely parameterized solution. Comparison of the tool–holder model to a three-dimensional finite elements solution shows that the dynamic behavior is captured with sufficient accuracy. The tool–holder model is then coupled with the experimentally determined spindle–machine dynamics through RCSA to realize a model of the tool-tip dynamics. The coupled model is validated through experiments for three different tool overhang lengths. The presented technique can be used to predict the tool-tip dynamics for different tool-and-holder combinations and for optimization studies without the need for extensive experimentation.  相似文献   

13.
Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high-speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process of spindle tool. Prediction of the dynamic behavior at spindle tool tip is therefore of importance for assessing the machining stability of a machine tool at design stage. This study was aimed to evaluate the machining stability of a vertical milling system under the interactive influence of the spindle unit and the machine frame structure. To this end, a realistic finite element model of a vertical milling tool was generated by incorporating the spindle-bearing model into the head stock mounted on machine frame. The influences of the dynamics of spindle-bearing system and the machine frame structure were investigated respectively. Current results show that the machine tool spindle system demonstrates different dynamic behaviors at different frequency ranges, which are also characterized as structural modes and spindle modes, respectively. In particular, the maximum compliance of spindle tool tip was found to occur at the bending vibrations of spindle shaft and vary with the preload amount of spindle bearing. The machining stabilities were predicted to different extent, depending on the exciting modes which could be related to the influences of machine frame and spindle unit.  相似文献   

14.
This paper presents the design and dynamic optimization of an ultraprecision diamond flycutting machine tool for producing flat half-meter-scale optics. A novel tool holder is designed, which can achieve micron-level axial feeding and tool angle accurate adjustment, and new technology is also used to allow alignment of the spindle axis to the horizontal-slide travel. The design and characteristic analyses of this machine tool are presented, including the static, modal, harmonic, and rotor dynamic analysis for predicting its static and dynamic performance. A prototype is built based on the analysis and FE model considering the joint parameters. The machining test shows that this machine tool can successfully produce 415?×?415-mm surfaces on aluminum and crystalline optics, with 1.3-μm flatness and 2.4-nm rms roughness. Moreover, the differences of design concepts are discussed between the ultraprecision machine tool for optical parts machining and the conventional machine tool.  相似文献   

15.
The geometric quality of high-precision parts is highly dependent on the dynamic performance of the entire machining system, which is determined by the interrelated dynamics of machine tool mechanical structure and cutting process. This performance is of great importance in advanced, high-precision manufacturing processes, including aerospace and biomedical applications. In this paper, the dynamics of the combined spindle/cutter system, a major component of any machine tool, is identified using impact testing techniques and is successfully approximated by a second-order linear model. Results of computer simulations of machining processes that include the identified spindle/cutter dynamics show a significant influence on the quality of the final product. From this, it is concluded that, for precision workpieces, the dynamics of the spindle and cutter system will have to be taken into account in order to improve future machining controls and processes.  相似文献   

16.
Dynamic characterization of machining robot and stability analysis   总被引:2,自引:0,他引:2  
Machining robots have major advantages over cartesian machine tools because of their flexibility, their ability to reach inaccessible areas on a complex part, and their important workspace. However, their lack of rigidity and precision is still a limit for precision tasks. Innovations and design optimization of robotic structure, links, and power transmission allow robot manufacturers to propose business solutions for machining applications. Beyond accuracy problems, it is also necessary to quantify the vibration phenomena that may affect, as in machine tools, the quality of machined parts and the tools and spindle lifespan. These vibrations occurred at specific machining conditions depending on robot and spindle dynamic properties. The robot’s posture evolved significantly in its workspace and induces dynamic’s changes observed at the tool tip that in turn impact the stability of the machining process. The objective of this paper is to quantify the dynamic behavior’s variation of an ABB IRB 6660 robot equipped with a high-speed machining (HSM) spindle in its workspace and analyze the consequences in terms of machining stability. Through an experimental modal characterization, significant variability of modal parameters is observed at the tool tip and impacts the stability of machining. The results show that an adjustment of the cutting conditions must accompany the change of robot posture during machining to ensure stability.  相似文献   

17.
The machine tool joint is a very important factor in the overall machine tool dynamic analysis, and it has great effects on the machining performance of a machine tool. As a very important operation parameter, preload greatly influences the stiffness and the damping of a machine tool joint. This paper presents the effect of preload on the dynamic stiffness of the spindle nose of a horizontal machining center. By discussing types and distribution of machine tool joints, studies on the joints of ball screws, linear guides and bolts are carried out. The influence of preload on the axial stiffness of a ball screw is calculated based on Hertzian contact theory and the effect of pretightening moment on pressure of bolt joint is discussed, while the dynamic stiffness and the damping of a linear guide are identified by an optimum algorithm with the simulated and experimental results. A finite element model (FEM) of the whole machine tool structure considering the effects of different joints is created and verified against the test results, and then the influence of preloads on ball screws and linear guides is predicted. Results indicate that preloads on machine tool joints have significant effects on the dynamic stiffness of the spindle nose.  相似文献   

18.
The demand for modular tools in machining operations has been increasing, owing to their flexibility, reduced cost, and productivity improvements when compared to solid carbide tools. Essentially, modular tools are interchangeable cutters that are assembled together with a joint. The effects of joint dynamics are often neglected when characterizing the dynamics of assembled mechanical systems, due to the assumption of rigid connections. In such cases, deviations between real and predicted system dynamic responses are inevitable. To prevent chatter vibration in machining operations, the accurate prediction of the dynamics of the tools is critical. In this study, the classic receptance coupling technique is enhanced by identifying the joint dynamics between substructures through experimental and finite-element (FE) analyses. The rotational dynamics of a substructure is indirectly identified using a gauge tool. The characteristics of a fastener joint (such as mass, spring and damping elements) are identified. Further, with the identified joint dynamics, the dynamic properties of the modular tools with the new interchangeable carbide tools are also predicted. Various experiments have been performed to verify the effectiveness of the joint identification method for modular tools. The method enables designers to optimize dynamic behaviour in the conceptual design stage of modular tools to improve productivity while minimizing chatter vibrations.  相似文献   

19.
使机床切削点动柔度最大值在整个工作频率范围内最小,是机床实现无颤振稳定切削和高精度切削加工的要求,也是对其进行动态优化设计所应达到的目标。基于模态柔度和能量分布的机床结构动态优化设计原理,实现了一种以降低切削点交叉动柔度值为目标的优化方法。该方法利用切削点交叉动柔度与模态柔度的关系,首先寻找薄弱模态,再分析薄弱模态上各部件和环节的能量分布,确定该模态上的薄弱环节,然后在一定的约束条件下,改进这些环节的设计参数,从而实现优化目标。以某型万能工具铣床为例,在整机建模分析计算的基础上,阐述了该优化方法的具体应用。通过模态柔度和能量分布计算,判明该机床的薄弱环节是横梁-水平主轴体系统,针对薄弱环节设计参数的改进实现其质量和刚度的优化,优化后的静柔度和模态柔度都有较大的降低,而固有频率则相应提高,切削点动柔度的最大值降低近18%。并在此基础上进行结构改进设计,改进前后机床的谐响应分析和切削试验对比结果表明优化方法有效地改善了机床的动态性能,再生颤振稳定性得到大幅提高。  相似文献   

20.
The mechanical structure has a main influence of the machining performance and the servo performance. In this study, a mechanical structure-based design method is presented to design and optimize an ultraprecision fly-cutting machine tool. This method takes full account of the influence of mechanical components on the machining performance and servo performance at the design stage. The effect of the components structure on the roughness of machined surface is discussed, and an optimized structural form of the aerostatic spindle is given. The influence of the mechanical structure on the control system and electronic drives is discussed, and an integrated dynamic design model is built and used to optimize the hydrostatic slide. Furthermore, the impact of mechanical system dynamic performance of the machine tool on the processing topography is analyzed by the finite element model of the machine tool. This method provides a theoretical basis for the design and optimization of mechanical components and machine tools stiffness loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号