首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
在内径为0.38 m的鼓泡塔中采用双电导探针法对不同通气速率下的气泡尺寸分布和局部气含率进行了实验研究,分析了气泡尺寸的概率密度分布。结果表明:气泡尺寸随轴向高度的增加而增大,随径向距离增加而减小;鼓泡塔中气液流动可分为过渡流域和充分发展流域,在过渡流域气含率随轴向高度增加而增大,在充分发展流域气含率趋于均值,径向局部气含率分布呈抛物线型下降。高气速下气泡尺寸概率密度分布比低气速下宽,且随轴向高度的增加分布变宽。  相似文献   

2.
《化学工程》2016,(1):43-48
为了研究鼓泡塔反应器两级气泡模型在高黏度下的适用性,采用动态气体逸出法,在内径为286 mm,总高为7 200 mm的鼓泡塔中考察了液体黏度(1.2×10-3—210.4×10-3Pa·s)和操作条件对塔内总气含率,大、小气泡相含率和大、小气泡上升速度等两级气泡模型参数的影响。结果表明:床层总气含率随表观气速的增加而增大,大气泡相含率受液体黏度的影响较小,受表观气速的影响较大;小气泡相含率随黏度的增加而迅速下降,在高气速时受表观气速的影响较小。大、小气泡上升速度均随液体黏度的增加而降低,但随表观气速的升高有着不同的变化关系:前者明显升高,后者略有降低。大气泡直径随着黏度增大而稍有增大,小气泡直径随着黏度增大急剧减小。  相似文献   

3.
实验测定了低气速下CO2气泡群在牛顿流体、剪切变稀流体及黏弹性流体中的气含率。讨论了流体的流变性、质量分数及表观气速对气含率的影响。结果表明:在3种不同性质的流体中,气含率均随表观气速的增大而增大。同时发现流体性质对气含率具有不同的影响:对于牛顿流体,表观气速较低时,质量分数对气含率影响可忽略;对于非牛顿流体,气含率随着流动指数n的减小而减小,即剪切变稀效应对气含率有负作用,而黏弹性对气含率的影响可忽略。气含率是气液传质过程设计中最重要的参数,因此研究结果为进一步研究CO2气泡群在非牛顿流体中的传质奠定了一定基础。  相似文献   

4.
三相循环流化床中气泡大小及其分布的实验研究   总被引:12,自引:3,他引:9       下载免费PDF全文
用光纤探头技术对三相循环流化床中的气泡大小及其分布进行了系统研究 ,实验测定了操作条件对气泡大小及其分布的影响规律 .实验结果表明 ,三相循环流化床中气泡的大小分布可用对数正态分布表征 ,在实验条件下气泡平均直径在床中心区域较小且沿半径方向由中心向边壁逐渐增大 ,并随表观气速的增大而减小 ,随固含率的增大而增大 ,表观液速对气泡平均直径的影响较小  相似文献   

5.
很多废水处理装置涉及非牛顿型流体中的多相流动和传质问题,研究其中的气液传质过程有助于实现装置的优化设计和高效节能运行。以鼓泡反应器内清水和不同质量分数的羧甲基纤维素钠(CMC)水溶液为实验对象,分别研究气相表观气速和液相流变特性对气泡尺寸分布、全局气含率和体积氧传质系数的影响。实验结果表明,液相的流变特性对其传质特性参数均有较大影响。与清水相比,CMC水溶液中气泡平均直径和分布范围更大;清水和CMC水溶液的全局气含率均随表观气速的增加而增大;CMC水溶液的体积氧传质系数随CMC水溶液质量分数的增加而减小。基于实验研究,得出修正的体积氧传质系数公式和适用于幂律型非牛顿流体流动体系氧传递过程的无量纲关联式,可很好地实现非牛顿流体流动的废水处理装置中气液传质参数的计算。  相似文献   

6.
采用动态气体逸出法,在高7.0 m、直径0.3 m的有机玻璃塔中研究了固含率对沸腾床反应器内气泡行为特性的影响。在表观气速2.16~21.62 cm/s和固含率9.8%~39.0%(体积分数)范围内测定了反应器内的总气含率、大小气泡含率、大小气泡上升速度及其尺寸等参数。结果表明:总气含率随着表观气速的增大而增大,随着固含率的增大而减小。随着表观气速的增大,大气泡含率、大气泡直径及其上升速度均呈增大趋势;小气泡含率明显增大,但小气泡上升速度和直径趋于减小。随着固含率的增大,大气泡含率略有降低,但大气泡直径及其上升速度都明显增大;当固含率超过19.5%(体积分数)后,小气泡上升速度几乎下降为0;当固含率达到29.3%(体积分数)时,小气泡基本消失。  相似文献   

7.
很多废水处理装置涉及非牛顿型流体中的多相流动和传质问题,研究其中的气液传质过程有助于实现装置的优化设计和高效节能运行。以鼓泡反应器内清水和不同质量分数的羧甲基纤维素钠(CMC)水溶液为实验对象,分别研究气相表观气速和液相流变特性对气泡尺寸分布、全局气含率和体积氧传质系数的影响。实验结果表明,液相的流变特性对其传质特性参数均有较大影响。与清水相比,CMC水溶液中气泡平均直径和分布范围更大;清水和CMC水溶液的全局气含率均随表观气速的增加而增大;CMC水溶液的体积氧传质系数随CMC水溶液质量分数的增加而减小。基于实验研究,得出修正的体积氧传质系数公式和适用于幂律型非牛顿流体流动体系氧传递过程的无量纲关联式,可很好地实现非牛顿流体流动的废水处理装置中气液传质参数的计算。  相似文献   

8.
采用动态气体逸出法,在高7.0 m、直径0.3 m的有机玻璃塔中研究了固含率对沸腾床反应器内气泡行为特性的影响。在表观气速2.16~21.62 cm/s和固含率9.8%~39.0%(体积分数)范围内测定了反应器内的总气含率、大小气泡含率、大小气泡上升速度及其尺寸等参数。结果表明:总气含率随着表观气速的增大而增大,随着固含率的增大而减小。随着表观气速的增大,大气泡含率、大气泡直径及其上升速度均呈增大趋势;小气泡含率明显增大,但小气泡上升速度和直径趋于减小。随着固含率的增大,大气泡含率略有降低,但大气泡直径及其上升速度都明显增大;当固含率超过19.5%(体积分数)后,小气泡上升速度几乎下降为0;当固含率达到29.3%(体积分数)时,小气泡基本消失。  相似文献   

9.
牛犁  刘梦溪  王海北 《化工学报》2022,73(6):2622-2635
在一套流化床冷模实验装置中对黄沙颗粒和黄沙-硅微粉 (20 μm)混合颗粒进行实验。测量固含率时间序列信号并进行统计分析,提出并建立复杂光纤脉动信号的解耦方法,实现稠密气固流中介尺度流动结构的准确识别。基于统计矩一致性原理提出气泡阈值的计算方法,通过遍历法确定气泡阈值。对气泡阈值变化规律进行分析,发现加入细颗粒有助于改善流化质量,随表观气速的增加,气泡阈值减小。对气泡、乳化和聚团三相的相分率进行统计,发现在黄沙颗粒中加入少量(5%,质量分数)细颗粒能够显著改善流化质量,细颗粒添加量过多时(10%),对流化质量的改善将减弱。对气泡的流体力学特性进行分析,发现加入10%硅微粉后,气泡弦长增大,频率降低,速度略有降低。对颗粒聚团流体力学特性进行分析,发现随硅微粉含量增加,表观气速对聚团速度的影响减弱,聚团弦长略有减小。加入5%硅微粉后,颗粒聚团的出现频率较小且径向上分布均一。加入10%硅微粉后,聚团频率有所增大,说明加入过多硅微粉会促进聚团的形成。  相似文献   

10.
以欧拉多项流模型为基础,对底角锥度为60°、床直径为0.44 m的喷动床内气固两相流的动力学特性进行了模拟研究,并对不同气速下喷泉高度、颗粒体积分数、颗粒速率的变化进行分析,结果发现喷泉高度与进口气速在u/ums=1.2~1.8范围内具有良好的线性关系,拟合度可达到0.9997。固体颗粒体积分数在轴心区域较高,随着径向距离的增加逐渐下降,且随高度的增加呈现先减小后增大的趋势;颗粒体积分数受速率的影响较大,随着喷动速率的增大,颗粒体积分数趋于减小,但减小幅度不同。颗粒速度在喷泉核心区随床层高度增大而减小。同一床层高度上的颗粒速度随气速的增加而增大,但增大值不同。  相似文献   

11.
The nonlinear dynamics of in-line bubbles rising with coalescence in non-Newtonian Carboxymethylcellulose sodium (CMC) fluids was studied through the techniques such as the multiresolution signal decomposition and the chaotic time series analysis. The temporary signals of bubble passages collected by an optical sensing device at different heights were investigated by a 12-level wavelet decomposition and the scalewise characteristics of bubble motion were extracted and analyzed. The chaotic time series analysis distinguished the periodicity or the deterministic chaos of bubble motion successsfully. The calculation of Kolmogorov entropy proves that in the ranges of experimental heights and gas flowrates, the bubble rising dynamics becomes more chaotic with the increase of height, and reaches the maximum chaotic extent in a certain height, while with the further increase of height, the chaotic extent decreases slowly. With the increase of gas flowrate, at the lower height, the bubble rising dynamics changes from periodicity to deterministic chaos, and at the higher heights it reaches the maximum chaotic extent in a certain gas flowrate; however, for both cases, it has little change in the higher gas flowrates. Moreover, with the increase of CMC concentration, the bubble rising dynamics becomes less chaotic when the height is beyond a certain value.  相似文献   

12.
The chaotic characteristics of bubbles rising with accompanying coalescences in pseudoplastic aqueous carboxymethylcellulose sodium (CMC) solution were studied by means of smoothed pseudo Wigner-Ville distribution and Wigner-Hough distribution. The temporal signal of bubble passage was measured utilizing a photoconductive data acquisition system. As bubble coalescence occurred, the smoothed pseudo Wigner-Ville distribution of the signal revealed that the signal could be divided into low-frequency and high-frequency ranges and the transition range according to the distribution feature of frequency domain, which reflected eddy motion of fluid, high frequency fluctuations of fluid velocity and other random components measured in the signal, and bubbles rising accompanied with coalescences, respectively. However, bubble coalescence occurred in the lower position and the frequency range of bubbles motion became wide under higher gas flowrate, while the frequency range of bubbles motion became narrow when the CMC concentration increased. The typical dynamics of bubbles motion, such as periodicity, bifurcation and chaos, could be easily found in terms of the Wigner-Hough distribution.  相似文献   

13.
The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval l0 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.  相似文献   

14.
The coalescence of two growing bubbles presents unique characteristics compared to static bubble coalescence. The gas injection flowrate significantly affects the different stages of bubble evolution, which is poorly understood. In this study, we investigate the flowrate effects on the lateral coalescence of two growing bubbles experimentally. The synchronous bubbling from adjacent needles is achieved using water to push air. During the bubble growth process, we find that the initial nonlinear evolution of bubble volume is because the bubble emerges as a small spherical cap with a large curvature radius and apparent contact angle. As the neck expands after bubble coalescence, the injection flowrate accelerates the neck evolution compared to the case without air injection. We find the neck expansion time decreases linearly with increasing flowrate, while the expansion speed increases with flowrate, but only in the early stage. Moreover, we propose a new theoretical expression that predicts the neck radius well at all the flowrates. At the post-coalescence oscillation stage, the average projection area of the coalesced bubble increases linearly with time, except for periodic oscillations. Besides, we find that the injected air primarily influences the coalesced bubble's height, which in turn affects the projection area.  相似文献   

15.
A flying optical probe technique has been developed and employed to measure bubble size above sieve trays in an air-water facility simulating cross-flow distillation (CRODIS). Despite the highly turbulent conditions occurring in the flows investigated, successful measurements were made of bubble size distributions at a series of levels above the trays. Using this technique, experiments are carried out on the CRODIS facility covering a range of gas and liquid flowrates and several tray configurations and the results are presented in this paper. Gas flowrate, sieve hole size and weir height were found to exhibit a significant effect on bubble size distribution, whereas liquid flowrate was shown to have negligible influence.  相似文献   

16.
采用激光成像结合CCD摄像技术分别对牛顿及非牛顿流体(甘油和羧甲基纤维素钠水溶液)中的气泡生成行为进行了研究,对2种流体气泡生成过程中气泡形状和体积变化进行了比较。分析了非牛顿流体的弹性效应对气泡生成过程气泡形状的影响。实验结果表明,在实验条件范围内,甘油中,气泡生长初期,气泡体积增加较快,到了后期,增加幅度减缓,气速对气泡生长过程气泡体积影响很小;羧甲基纤维素钠(CMC)水溶液中,气泡生长初期,气泡缓慢生长,气速对气泡体积影响很小,到了后期,气泡体积增加幅度变大,气泡体积随着气速的增大而增大。  相似文献   

17.
Mean relative gas hold up, slip velocity, bubble size distribution, and volumetric mass transfer coefficient of oxygen were measured in sparged columns of highly viscous non-Newtonian fluids (CMC solutions) as a function of the gas flow rate, and CMC concentration (fluid consistency index k, and flow behaviour index n).By comparison of the measured bubble swarm velocities with those calculated by relations for single bubbles the bubble swarm behaviour was investigated. It could be shown that small bubbles in swarm have higher rising velocities than single bubbles, expecially in highly viscous media. Large single bubbles rise with high velocity due to the change of their shape caused by the swarm of the smaller bubbles. No large bubbles with spherical cap shape could be observed. The volumetric mass transfer coefficient decreases rapidly with increasing CMC-concentration.A comparison of the volumetric mass transfer coefficients with those measured in mechanically agitated vessels indicates, that the performance of sparged columns is comparable with the one of agitated vessels. Because of their lower energy requirement sparged columns are more economical than mechanically agitated vessels. It is possible to improve the performance of sparged columns by the redispersion of large bubbles in a multistage equipment.  相似文献   

18.
A series of 50 experiments was performed to investigate particle size and yield from three laboratory spray dryers with two-fluid nozzles, using an aqueous solution of egg albumin as the feed. First principles theory suggests that the main parameters affecting final particle size should be atomization gas flowrate and velocity, feed solution flowrate, solution concentration, and inlet and outlet gas temperature. The experiments demonstrated that atomization gas velocity at the nozzle correlated better than volumetric gas flowrate to the final particle size obtained. Increasing atomization gas flow gave a decrease in particle size, levelling off at high nozzle gas velocities approaching sonic values. Liquid flowrate had little effect, and hybrid ratios such as the ALM (atomization gas to liquid flow ratio) did not correlate well to measured final particle size for this system. This seems likely to apply to aqueous systems with temperature limitations, where liquid flowrates will be relatively low compared to gas flowrates (both atomization and main gas flow). Particle size generally increased with solution concentration, and in some cases scaled exactly, assuming a constant initial droplet size and final particle density. All experiments were performed below the boiling point and therefore temperature had little effect. Particles of 2–3 microns were obtained at high atomization gas flows, indicating initial droplet sizes of 4–7 microns at most, while lower flowrates gave substantially larger particles and a wider size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号