首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
樊雄 《铸造技术》2014,(2):247-249
研究了高碳珠光体T8钢在ECAP处理后的显微组织和力学性能。结果表明,利用多道次ECAP温变形能够使高碳珠光体钢组织呈现超微细化效果。复相组织中亚纳米级铁素体相纳米压痕杨氏模量和硬度分别为203 GPa和4.4 GPa。当纳米压痕深度超过100 nm后,杨氏模量对基底效应敏感度较低,而纳米压痕硬度出现较为明显的基底效应。  相似文献   

2.
采用多道次ECAP温变形实现了高碳珠光体钢组织的超细化,利用透射电镜(TEM)和原子力显微镜(AFM)观察了变形前后珠光体的演变情况,并用纳米压痕技术表征了铁素体相的纳米力学性能.结果表明:经历大应变温变形之后,制备出了晶粒尺度均在亚微米量级的超微细复相组织(铁素体+粒状渗碳体),珠光体的组织形态发生由二维层片状向三维等轴状的转变;等轴状亚微米级铁素体相的纳米压痕硬度和Young's模量分别为4.4 GPa和200 GPa,都略高于原始珠光体组织,当压痕深度超过100 nm之后,纳米压痕硬度呈现出明显的基底效应,而Young's模量则趋于一致,对基底效应不敏感.  相似文献   

3.
采用Bc方式分别在室温、650℃条件下对高碳粒状珠光体钢进行等通道角挤压(ECAP)变形;借助扫描电镜(SEM)、透射电镜(TEM)、显微硬度计和拉伸试验机研究了不同温度条件下高碳粒状珠光体钢ECAP变形后的微观组织和力学性能.结果表明:冷、温变形4道次后,获得了晶粒尺度分别为400 nmn、450 nm 的等轴铁素体...  相似文献   

4.
以复合添加Nb和Ti的微合金钢为研究对象,采用热模拟、显微硬度、透射电镜以及纳米压痕技术等方法对实验钢在连续冷却条件下和卷取过程中的冷却速率对组织演变及显微硬度的影响进行观察和分析,研究了(Nb,Ti)C在卷取中的析出规律及其对铁素体相微观力学性能的影响.结果表明,连续冷却和卷取过程中的冷却速率的增加都能促进Nb-Ti实验钢从铁素体+珠光体组织向贝氏体组织转变,细化铁素体晶粒.在连续冷却条件下,实验钢的显微硬度随着冷却速率的增加逐渐升高,而在卷取过程中由于较小冷却速率能够促进(Nb,Ti)C在铁素体中的形核和长大使得铁素体中存在大量均匀弥散分布的纳米析出物,提高了基体的强度,因此随着卷取过程中冷却速率的增加实验钢的显微硬度呈现降低的趋势.Nb-Ti实验钢中铁素体相的纳米硬度为4.13 GPa,Young's模量为249.3 GPa,普通C-Si-Mn钢铁素体相的纳米硬度为2.64 GPa,Young's模量为237.4 GPa,纳米析出物对铁素体相的纳米硬度的贡献达到1.49 GPa.  相似文献   

5.
采用激光选区熔化技术成形Cu-Al-Mn-La合金,成形过程中合金粉末逐层叠加并经历快速熔化凝固的过程,使得合金的组织与铸造中不同,性能得到了改善。通过对微观组织分析,试样在熔敷道中心至边界依次分布着细晶区、过渡区和等轴晶区,同时存在马氏体结构;物相分析可知试样中含有β1母相和马氏体相,纳米压痕分析显示试样的纳米硬度为(4.33±0.17)GPa,杨氏模量为(122±8)GPa。  相似文献   

6.
使用EBSD和纳米压痕法研究毫米级块状单晶Al3Sc对应的取向、硬度和杨氏模量。试验结果表明,选用过共晶Al-Sc合金加热至液态后缓慢冷却(60 ℃/h)可以得到毫米级单晶Al3Sc,通过EBSD和纳米压痕法得到五个不同取向(567)、(139)、(124)、(113)和(144)单晶Al3Sc的硬度在3.7~4.3 GPa,复合弹性响应模量在143.6~146.1 GPa。对比不同泊松比下各取向的杨氏模量理论值与试验值,发现泊松比为0.188时二者之间差异最小,对应各取向的杨氏模量试验值在157.5~160.6 GPa。  相似文献   

7.
通过化学气相沉积方法合成截面为六边形的单晶钨纳米晶须,利用纳米压痕仪和原子力显微镜对硅基底上的钨纳米晶须的力学性能进行表征。纳米压痕测试结果表明,钨纳米晶须的硬度为(6.2±1.7) GPa,弹性模量为(225±20) GPa。对比研究结果表明,钨纳米晶须的硬度与钨微米晶须的硬度相当,但比块体钨单晶高35%。这种硬度的增高是由于具有完好晶体结构的钨晶须在压痕测试中不会出现块体钨单晶中的位错崩。钨纳米晶须的弹性模量相当于钨微米晶须的80%,主要是由于纳米晶须的尺寸效应和测量过程中的基底效应所致。  相似文献   

8.
一种低碳低合金钢的纳米压痕表征   总被引:4,自引:0,他引:4  
对具有两种不同组织状态的一种低碳低合金钢进行了纳米压痕表征.结果表明,在双相组织试样中,马氏体的硬度高于铁索体的70%以上.在纳米压痕实验过程中,由于马氏体相的尺寸较小并被软的铁素体基体所包围,当压痕深度超过40nm时,纳米压痕硬度呈现出明显的基底效应.由于在铁索体一奥氏体两相区加工过程中发生C元素向奥氏体的分配,双相组织试样中的马氏体中富集了数倍于钢的名义含量的C元素.结果导致双相组织试样中马氏体的平均纳米压痕硬度比同一钢的全马氏体组织试样高出30%以上.此外,还讨论了C的富集分配对马氏体Poisson比和Young’s模量的可能影响.  相似文献   

9.
采用等径弯曲通道变形(Equal Channel Angular Pressing,ECAP)技术制备了不同晶粒尺寸的超细晶工业纯钛,通过纳米压痕测试技术对ECAP变形工业纯钛的力学性能进行研究,讨论了加载应变速率和晶粒尺寸对工业纯钛硬度测试结果的影响,进一步分析了ECAP变形工业纯钛的应变硬化能力和残余应力。结果表明:随着加载应变速率的增大和晶粒尺寸的减小,工业纯钛的硬度值增加。硬度-位移曲线表现出具有硬化效应的压痕尺寸效应(Indentation Size Effect,ISE)。纳米压痕形貌表明:ECAP变形工业纯钛的应变硬化能力降低,存在残余压应力。  相似文献   

10.
结合纳米压痕及高分辨电子背散射衍射技术(EBSD)测定了TA15钛合金中α及β相的弹性模量和纳米硬度,揭示了纳米压痕附近应力-应变场及几何必须位错(GND)密度的非均匀分布情况.利用高分辨EBSD测试过程中同步保存的背散射电子衍射花样,并基于cross-correlation的处理方法,计算得出了纳米压痕附近区域的残余弹性应力-应变场分布.结合应变梯度场理论,计算分析了纳米压痕附近区域的几何必须位错密度分布,进而对合金的微观塑性变形机制进行了讨论与分析.结果表明,α相的弹性模量及纳米硬度分别为129.05 GPa和6.44GPa,而β相的相应值为109.80 GPa和4.29 GPa.纳米压痕附近区域的残余Mises应力呈现明显的非均匀分布并受到相邻较软β相的显著影响.压痕附近的低残余应力区域伴随有显著较高的<α>形和柱面型几何必须位错密度分布.  相似文献   

11.
目的 研究不同状态激光选区熔化Ti-6Al-4V合金的纳米压痕尺寸效应。方法 对原始态合金分别进行600、700、800、900℃退火处理,利用扫描电子显微镜观察原始态和4种退火态合金的显微组织。基于纳米压痕技术测量原始态及4种退火态合金的纳米硬度和弹性模量。基于比例试样阻力模型、Nix-Gao模型和Meyer定律对纳米硬度进行函数拟合。结果 随着退火温度的升高,原始态组织从魏氏体逐渐演变为网篮组织。5种形态的Ti-6Al-4V合金的硬度和弹性模量均出现随压入深度的增加而减小的现象,表现出典型的压痕尺寸效应,基于试验测得的原始态及4种退火态合金的纳米硬度分别为3.66、4.36、3.96、3.88、4.77 GPa,弹性模量分别为113.1、125.2、102.1、100.3、108.7 GPa;基于比例试样阻力模型计算的纳米硬度分别为3.53、4.34、3.92、3.52、4.04 GPa;基于Nix-Gao模型计算的纳米硬度分别为3.68、3.94、4.07、3.85、4.47 GPa;基于Meyer定律拟合出的迈耶指数分别为1.75、1.86、1.82、1.80、1.81,均小于...  相似文献   

12.
对经完全退火处理的40Cr钢在室温下实施了等效应变约为0.5的等通道转角挤压(ECAP),发现钢中铁素体晶粒高效细化(从10~50μm到1μm),珠光体组织亦发生明显的剪切变形。结果表明,经室温ECAP加工,铁素体+珠光体组织的中碳钢材料的屈服极限、抗拉强度大幅提升,塑性降低但仍保持在很高的水平。  相似文献   

13.
利用扫描电镜(SEM)、光学显微镜(OM)和电子万能试验机等研究了微合金元素Nb对高碳耐磨钢球用B5钢微观组织和力学性能的影响.结果 表明:添加质量分数为0.040%的铌元素后,高碳耐磨钢球用B5钢的晶粒尺寸从27.60 μm降低到21.25 μm,珠光体团尺寸从12.1μm减小至7.7 μm,珠光体片层间距降低了约15%,渗碳体片展弦比减小;第二相粒子(Nb,Ti)C的析出起到沉淀强化的同时,也促使渗碳体片层出现碎化、断开现象.添加质量分数为0.040%的铌元素后,提高了高碳耐磨钢球用B5钢的强度和塑性,其抗拉强度为1026 MPa;断后伸长率为11.8%.  相似文献   

14.
电热爆炸喷涂WC/Co涂层组织和性能研究   总被引:1,自引:1,他引:0  
利用电热爆炸喷涂技术,在45钢表面制备了WC/Co耐磨涂层,使用SEM和XRD分析了涂层的组织与相结构,使用显微硬度计和纳米压痕仪测试了涂层的硬度和弹性模量。结果发现,电热爆炸喷涂WC/Co涂层致密,无明显的层状结构;涂层的显微硬度最高达到了2836HV0.1,平均为1704HV0.1;纳米压痕仪测得涂层的弹性模量为346.8GPa;涂层的相组成主要为WC和W2C;在涂层与基体的结合区,出现柱状晶,证明涂层与基体主要是冶金结合。  相似文献   

15.
用高能量密度脉冲等离子体于室温下在氮化硅陶瓷刀具上成功沉积了高硬耐磨的氮化钛涂层。薄膜厚度用光学显微镜和俄歇电子能谱仪测定,薄膜元素和相组成与分布分别用俄歇电子能谱仪、X光电子能谱以及X光衍射仪测定,薄膜微观结构用扫描电镜观察,薄膜表面粗糙度用光学显微镜测定,薄膜力学性能由纳米压痕实验和纳米划痕实验确定,薄膜的磨损性能用上业条件下的切削实验评价。实验结果表明,在最优化条件下,涂层与基体的结合力很好,纳米划痕实验临界载荷达80mN以上;氮化钛涂层具有很高的硬度和杨氏模量,分别达28GPa和350GPa以上。涂层刀具用于HB达2200MPa—2300MPa的HT250钢切削实验表明,刀具耐磨损能力增强,寿命明显提高。  相似文献   

16.
通过热压方法制备AlCrTaTiZr高熵合金合金靶材,采用磁控溅射方法在抛光后Si基体表面制备AlCrTaTiZrNx高熵合金涂层,并用扫描电镜、X射线衍射和纳米压痕仪等研究了靶成分、相结构及涂层的微观形貌、成分和常规力学性能。结果表明,AlCrTaTiZr高熵合金靶材为体心立方结构,AlCrTaTiZrNx高熵合金薄膜均匀致密,未通入氮气的薄膜为非晶态,通入氮气的薄膜晶体结构均为简单的面心立方结构。当氮气流量百分比为10%时,薄膜力学性能最好,其硬度和杨氏模量分别达到了22.9GPa和234.77GPa。  相似文献   

17.
纳米硬度计测定电刷镀纳米颗粒复合镀层的弹性模量   总被引:1,自引:0,他引:1  
采用电刷镀技术在钢基体表面制备了n-Al2O3/Ni纳米颗粒复合镀层,借助纳米硬度计的纳米压痕法测定了复合镀层的弹性模量及其分布。测试结果表明:n—Al2O3/Ni纳米颗粒复合刷镀层的杨氏模量约为200GPa;复合刷镀层中存在的气孔、裂纹等缺陷处具有较低的弹性模量,除这些缺陷微区外,复合刷镀层具有均一的弹性模量等力学性能。指出优化和严格控制复合刷镀层制备工艺、减少或消除镀层缺陷,是纳米颗粒复合刷镀层具有均匀性能、提高宏观力学性能的有效途径。  相似文献   

18.
以SWRS82B钢为研究对象,制定热处理工艺:将试样奥氏体化后在低温盐槽停留短时间后马上进入高温盐槽等温,目的是增加珠光体转变过冷度,提高珠光体形核率,减小珠光体团尺寸,从而探索高碳珠光体钢力学性能与显微组织尺寸之间的关系。结果表明,珠光体钢强度指标主要由珠光体片层间距决定。晶粒尺寸明显影响塑性指标,晶粒尺寸越小塑性指标越高,而当晶粒尺寸相近时,珠光体团尺寸越细小断面收缩率越高。  相似文献   

19.
超细晶粒高碳钢微复相组织及性能   总被引:2,自引:0,他引:2  
在650℃采用等通道角挤压变形(ECAP)方法对原始组织为层片状珠光体的T8钢进行了Bc方式(每道次挤压后,试样按同一方向旋转90°进行下一道次挤压)的4道次变形,获得了晶粒尺寸在亚微米量级的超微细复相(α+θ)组织,其中等轴铁素体晶粒尺寸约为400 nm,球化完全的渗碳体颗粒粒径约为150 nm。微拉伸实验和SEM断口观察表明,经过4道次ECAP变形后,超微细复相组织的抗拉强度相对于原始珠光体组织而言有所下降,从867 MPa降至819 MPa,但屈服强度显著提高,由479MPa增加到664 MPa,相应的整体伸长率和断面收缩率分别从4.5%、5.2%增加到18%、31%,硬度值变化不明显;超微细复相组织的断口形貌由大量细小的韧窝构成,为典型的韧性断裂,而原始珠光体组织断口形貌则由河流花样组成,呈脆性解理断裂特征。  相似文献   

20.
利用微弧氧化技术在6061铝合金表面原位生长ZrO2-Al2O3复合陶瓷涂层,通过SEM、XRD及纳米压痕仪对陶瓷涂层的微观结构、相组成、硬度及杨氏模量进行分析,并对其热震及高载荷耐磨性能进行研究。结果表明:陶瓷涂层由疏松层和致密层组成,其表面分布较多微孔;陶瓷涂层主要由t-ZrO2、γ-Al2O3和α-Al2O3相组成,其维氏硬度和杨氏模量分别为19.569和307.927GPa,约为6061铝合金的8倍和3倍;此外,陶瓷涂层还具有较高的抗热震性和耐磨性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号