首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
李忠献  黄信 《工程力学》2013,30(3):120-125
跨海或库区的大跨度桥梁在地震作用下不仅需要考虑水体与桥墩的动力相互作用,同时由于各桥墩间跨度较大应考虑地震输入的行波效应。该文采用辐射波浪理论求解桥墩地震动水压力,建立了考虑地震动输入空间效应的深水桥梁地震响应分析方法,并考虑行波效应对深水连续刚构桥进行地震响应分析。研究表明:动水压力增大了桥梁结构的地震响应,其影响程度随着输入地震波和墩梁约束条件的不同而有所差异;考虑行波效应时地震动水压力对桥梁结构动力响应的影响较一致激励而言有所差别,同时地震动水压力对桥梁地震响应的影响随着视波速的不同而变化。由此得出结论,为合理评价地震动水压力对深水长大桥梁动力响应的影响应考虑地震动输入的行波效应。  相似文献   

2.
魏奇科  李正良 《振动与冲击》2011,30(10):236-240
由于特高压大跨越输电塔-线体系塔身高跨度大,仅考虑单塔及塔-线体系的一致地震输入是远远不够的。本文考虑地震波沿大跨越线路传播时引起的地震行波效应,建立了特高压大跨越输电塔-线体系精细的三维空间有限元模型,运用几何非线性动力时程分析方法研究了纵向地震作用下大跨越输电塔-线体系的地震响应特性,并和一致地震动输入下的反应进行了对比。结果表明:行波效应既可以增加又可以减小塔身的地震响应,主要与地震动作用于大跨越两端输电塔的相位差有关;行波效应对导线跨中竖向位移响应影响十分明显,但对导线内力响应影响很小  相似文献   

3.
白久林  欧进萍 《工程力学》2016,33(10):86-96
耐震时程法的典型表征在于随着时间的增加,地震强度逐渐增大。基于非线性最小二乘算法合成了基于我国抗震规范反应谱的三条耐震时程曲线。以两个5层和12层钢筋混凝土框架结构为例,分别对结构进行22条天然地震动下的增量动力分析和3条耐震时程曲线输入下的非线性分析,对比研究了结构在不同强度下的最大顶点位移、最大层间位移角、最大基底剪力和结构滞回耗能分析,比较了结构在大震时的最大层间位移角分布和最大楼层剪力分布。分析研究表明,耐震时程法能较好的预测结构的抗震响应,其分析结果离散性小,宏观上与多条天然地震动分析结果的中位值吻合较好。由于耐震时程法仅需进行一次时程分析便可获得结构不同强度下的抗震响应,计算效率高,计算精度较好,这为结构的抗震性能评估提供了一种新的有效方法。  相似文献   

4.
亓兴军  李小军  申永刚 《振动与冲击》2007,26(2):117-120,151
给出了地震行波输入下大跨度桥梁的半主动控制分析方法,对一座四跨连续刚构桥梁进行了具有不同视波速的行波输入下的半主动控制计算分析,并与地震动一致输入下的计算结果进行比较。结果表明,行波效应对该大跨连续刚构桥梁的地震反应和减震效果影响显著,对主梁和桥墩均会在较低视波速地震行波输入时表现出不利影响。为此,建议在确定半主动控制系统的参数时应考虑地震行波效应的影响以确保控震效果。  相似文献   

5.
多点激励下输电塔-导线体系纵向地震反应分析   总被引:4,自引:3,他引:1  
基于所建立的输电塔-导线体系空间有限元模型,利用非线性时程分析法研究了体系在多点地震输入下的反应特性.首先依据<电力设施抗震设计规范>,在传统的谐波叠加合成算法的基础上,给出了拟合规范反应谱的输电塔-导线体系多点地震动模拟算法.利用生成的人造地震动研究了行波效应、部分相干效应以及局部场地土效应对体系的影响规律,研究结果表明,在所考虑的行波波速下,行波效应对塔的受力有利,但放大了导线的轴力和位移响应;部分相干效应对于塔的受力、导线的轴力和位移响应均不利;局部场地土条件的差异同样会放大塔和导线的响应,随着各塔场地土条件差异变大,响应被强烈的放大了;在实际分析中,应该综合考虑三个因素对结构地震响应的影响,以保证结构体系的安全.  相似文献   

6.
行波效应对大型水电站厂房地震响应的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究行波效应对平面尺寸较大的水电站厂房结构地震响应的影响,选取某实际厂房结构,建立三维有限元模型,借助ABAQUS有限元软件,采用振型分解时程分析法进行结构动力计算。调整Koyna水平地震波加速度峰值为0.246g作为地震荷载。结果表明行波效应影响厂房结构位移响应主要体现在动位移峰值上,波速不大时可能使动位移峰值最大减小25%;对加速度响应峰值和响应时程影响都较明显,波速较小时可能使得结构加速度峰值滞后于地震加速度峰值出现;不考虑行波效应对厂房结构设计是偏安全的。如工程所在地地震波传播速度不大,可以适当考虑行波效应,以使结构设计更趋科学合理。  相似文献   

7.
为研究近断层脉冲效应和土-结构相互作用(SSI效应)对大跨斜拉桥地震响应的影响规律,以苏通大桥斜拉桥为研究对象,采用系统化的集总参数模型表征地基土的动力特性,建立了考虑SSI效应的结构动力数值计算模型,计算分析了破裂前方效应脉冲、滑冲效应脉冲和无脉冲三组近断层地震动作用下结构的地震响应。计算结果表明:相对于塔底固结模型,SSI效应降低了斜拉桥自振频率,并改变了高阶振型的产生次序;近断层地震动作用下,SSI效应可增大主塔位移响应,对其内力有削弱作用,并可降低纵桥向激励时主梁的位移和内力响应,但横桥向激励时,脉冲效应地震动作用下SSI效应明显增大了主梁的响应;脉冲效应地震动引起斜拉桥地震响应明显高于无脉冲地震动,滑冲效应主要影响纵桥向激励时主塔响应以及纵桥向(或横桥向)激励下主梁响应,破裂前方效应对横桥向激励下主塔响应影响更加显著。研究成果可为大跨斜拉桥在近断层地震动作用下的抗震设计提供借鉴。  相似文献   

8.
李永波  张鸿儒  郜新军 《工程力学》2012,29(11):183-190
为分析青藏铁路多年冻土区多跨简支梁桥地震响应情况,建立了一座10×32m箱形多跨简支梁桥三维全桥模型,以等效基础弹簧考虑桩-土相互作用;以具有初始间隙的并联弹簧-阻尼单元模拟伸缩缝两端结构的碰撞,研究了冻土融化深度、行波效应及碰撞效应对多跨简支桥梁结构地震响应的影响。结果表明:随着融土下限加深,等效基础弹簧刚度明显减小,在强地震动作用下,桥梁结构易发生落梁、桥墩倾覆等震害;当相邻碰撞体的相向位移超过伸缩缝宽度时两者发生碰撞,碰撞次数及碰撞力随地震动视波速及行进距离不同而不同,在行波波速较低且行进距离较小时碰撞效果明显,对桥梁地震响应影响较大,极易导致落梁;此外桥台对结构地震响应亦有显著影响。在对多年冻土区多跨简支梁桥抗震性能进行评估时,应特别重视夏季地震动低速行波时可能发生的震害。  相似文献   

9.
地震动行波效应对连续梁桥纵向地震碰撞反应的影响   总被引:5,自引:0,他引:5  
在等墩高的多跨连续梁桥中,虽然相邻联的基本振动周期完全相同,地震动的行波效应可能导致伸缩缝处相邻梁体间发生碰撞。采用接触单元模拟伸缩缝处相邻梁体间的碰撞,采用阻尼器来反映碰撞过程中的能量损失,应用非线性时程方法研究了地震动行波效应对连续梁桥纵向地震碰撞反应的影响。研究结果表明:地震动的行波效应在伸缩缝处相邻梁体间引起较大的相对位移,导致相邻梁体间发生碰撞,碰撞力的大小随表面视波速不同而不同。行波效应引起的伸缩缝处相邻梁体间碰撞,可能增大伸缩缝处相邻梁体间以及墩梁间相对位移,甚至造成上部结构在地震中发生落梁破坏,在连续梁桥的抗震设计与评估中,应该引起足够的重视。  相似文献   

10.
为研究近断层脉冲效应和土-结构相互作用(SSI效应)对大跨斜拉桥地震响应的影响规律,以苏通大桥斜拉桥为研究对象,采用系统化的集总参数模型表征地基土的动力特性,建立了考虑SSI效应的结构动力数值计算模型,计算分析了破裂前方效应脉冲、滑冲效应脉冲和无脉冲三组近断层地震动作用下结构的地震响应。计算结果表明:相对于塔底固结模型,SSI效应降低了斜拉桥自振频率,并改变了高阶振型的产生次序;近断层地震动作用下,SSI效应可增大主塔位移响应,对其内力有削弱作用,并可降低纵桥向激励时主梁的位移和内力响应,但横桥向激励时,脉冲效应地震动作用下SSI效应明显增大了主梁的响应;脉冲效应地震动引起斜拉桥地震响应明显高于无脉冲地震动,滑冲效应主要影响纵桥向激励时主塔响应以及纵桥向(或横桥向)激励下主梁响应,破裂前方效应对横桥向激励下主塔响应影响更加显著。研究成果可为大跨斜拉桥在近断层地震动作用下的抗震设计提供借鉴。  相似文献   

11.
单索面矮塔斜拉桥的动力特征参数研究   总被引:4,自引:0,他引:4  
结合小西湖双塔三跨单索面矮塔斜拉桥地震荷载作用下的结构动力反应,引入“斜拉索动力荷警效应暨响度”的概念定量分析了矮塔斜拉桥斜拉索在地震荷载下的实质作用,并据此提炼出能综合反映矮塔斜拉桥结尊翌考譬征的参数——“矮塔斜拉桥动力特征参数”;用“斜拉索动力荷载效应影响度”与“矮塔斜拉桥动力特征参数”的相关性定量描述矮塔斜拉桥的动力特点,对进一步认识矮塔斜拉桥的动力性能有一定的参考意义。  相似文献   

12.
大跨斜拉桥一般采用飘浮体系或者弹性约束体系,其在强震作用下梁端会发生很大位移,梁端的过大位移可能会导致主梁与相邻跨引桥的碰撞,使整个结构丧失整体性。本文针对强震作用下大跨斜拉桥伸缩缝处的碰撞现象,以一座典型大跨斜拉桥为例,建立了考虑引桥墩柱、塔柱弹塑性的空间非线性碰撞模型,采用非线性时程法研究了大跨斜拉桥伸缩缝处相邻跨梁体碰撞对桥梁结构地震反应的影响。研究结果表明:由于大跨桥梁结构主、引桥结构体系不同,在强震作用下主引桥相邻梁体易发生碰撞,碰撞不仅会产生很大的撞击力,而且使引桥地震力需求、引桥梁端位移、主引桥相对位移及引桥梁体搭接长度需求有较大增长,极易造成引桥的落梁或者破坏;而碰撞效应对主桥的地震需求影响较  相似文献   

13.
地震作用下大跨度斜拉桥和引桥间碰撞分析   总被引:2,自引:2,他引:0       下载免费PDF全文
强烈地震作用下大跨度斜拉桥和引桥(一般是简支梁桥或多跨连续梁桥)的纵向振动是耦合的,可能发生碰撞及落梁。采用非线性时程地震反应方法分析了梁端的纵向碰撞效应对体系整体反应的影响,其中对碰撞接触单元的刚度进行了比较分析,然后分别讨论了影响碰撞的几种因素,主要是伸缩缝初始间隙大小、相邻结构周期比等的影响。结果表明碰撞对引桥影响相对较大。  相似文献   

14.
徐龙河  武虎 《工程力学》2019,36(4):177-187
为减小斜拉桥横桥向的地震响应,提出一种设置预压弹簧自复位耗能支撑的斜拉桥横向减震体系及支撑参数的设计方法。以一座斜拉桥为研究对象,对支撑参数进行了设计,并对塔梁固结体系和采用支撑的减震体系进行地震时程分析,从关键位置的地震响应、耗能能力等方面对支撑体系的抗震性能进行了研究。结果表明,横桥向采用预压弹簧自复位耗能支撑的斜拉桥减震体系利用支撑良好的滞回耗能特性,有效减小桥塔位移和应变,改善桥塔受力,减小主梁的残余位移。附加预压弹簧自复位耗能支撑对斜拉桥地震响应有良好减震控制效果,是一种合理的抗震体系。  相似文献   

15.
宜宾长江公路大桥斜拉桥抗震性能评价   总被引:2,自引:0,他引:2  
采用单梁式有限元模型对宜宾长江公路大桥斜拉桥的动力特性和地震响应进行了计算,考虑了桩-土相互作用和群桩效应,采用反应谱法和时程分析法对该桥进行了地震反应的对比分析。计算结果表明:桥梁结构的抗震性能满足要求;抗震结构体系采用弹性索梁-塔连接体系是合适的,还可进一步降低弹性索刚度或者采用弹性索+阻尼器体系来减小桥梁地震反应;建议大跨度斜拉桥应该采用反应谱法和时程分析法同时计算,结构内力和变形以这两种方法计算结果的较大值作为抗震设计的依据。  相似文献   

16.
相邻桥跨间的碰撞效应是引起大跨桥梁引桥落梁的重要原因,本文以一座大跨三塔悬索桥为研究对象,建立了复杂的桥梁结构空间动力分析模型,采用非线性动力时程分析法,详细分析了大跨三塔悬索桥伸缩缝处主、引桥相邻梁体间的双边碰撞对桥梁结构地震反应的影响规律,揭示大跨桥梁主、引桥结构振动周期比与碰撞效应的内在联系。研究结果表明:当一侧引桥基本周期小于或者接近主桥梁端位移控制振型周期,而另一侧引桥基本周期显著大于主桥周期时,双边碰撞使长周期侧的引桥固定墩墩底地震内力响应、梁端位移、梁体搭接长度以及主、引桥间相对位移响应显著增大,而使短周期侧引桥梁端位移、梁体搭接长度以及主、引桥间相对位移响应轻微减小。  相似文献   

17.
苏通桥对非一致地震地面运动的反应和人工波质量的讨论   总被引:2,自引:0,他引:2  
秦权  孙晓燕  贺瑞  丁志峰  温国樑 《工程力学》2006,23(9):71-83,188
台湾集集地震SMART-II密集台阵的,带有GPS国际标准时间校准的7群非一致地震地面加速度记录,和2群以杂交法针对苏通桥桥位断层和地质构造产生的非一致地震人工地面加速度时程历史作为输入,分析了世界最大跨斜拉桥——苏通桥——对非一致地震地面运动的变形和内力反应。每群地震输入由两个或三个台站的三分量加速度记录组成。还考虑顺桥向与波传播方向、断层走向间不同夹角、大桥是否跨越断层的情况下非一致地震地面运动的反应,并与由每群台站记录中含最大水平地面峰值加速度的记录构成的一致地震地面运动的反应做了比较。比较表明:尽管相应的一致地震输入是由一群台站记录中含最大水平地面峰值加速度的记录组成,苏通桥的半数非一致地震反应仍比相应的一致地震反应大,个别情况的非一致反应甚至比一致反应大得多。因此,苏通桥这样的特大桥的抗震设计应当考虑非一致地震的影响。还提出桥梁设计者应根据桥的动力特性对地震安全性评价提出所需的地震动参数。还检查了有关部门对苏通桥抗震设计提供的人工加速度波的反应谱和互相关系数,结果表明桥梁设计者应当在多方面检查所提供的人工波的质量。  相似文献   

18.
以一座大跨斜拉桥为实例,建立其有限元模型计算分析了主动控制、半主动控制和被动控制对飘浮体系斜拉桥的减震效果,并分析了地震行波效应对斜拉桥地震反应的影响。结果表明,不同频谱成分的地震动输入显著影响三种控制方法的减震效果;半主动控制对于该斜拉桥整体地震反应的控制效果优于始终提供最大阻尼力的被动控制;行波效应对该斜拉桥无控制和有控制地震反应的影响基本相同,并且行波效应对三种控制方法减震效果的不利影响很小。这为漂浮体系斜拉桥的减震控制提供了理论上的指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号