首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过熔融共混法制备热塑性木薯淀粉(TPS)/二氧化硅(SiO_2)复合材料,利用热失重分析(TG)方法研究TPS/SiO_2复合材料的热降解温度及热降解动力学。结果表明,随着升温速率增加或加入SiO_2后,TPS/SiO_2复合材料的热降解温度增加。利用Kissinger方法对TPS/SiO_2复合材料热降解动力学进行研究,发现未添加SiO_2时TPS热降解活化能为206.90 kJ/mol;当添加2份SiO_2时,TPS/SiO_2复合材料热降解活化能提高到223.41kJ/mol;添加亲水SiO_2后TPS/SiO_2复合材料的热降解活化能高于添加疏水SiO_2的。采用Flynn-Wall-Ozawa方法发现,随着SiO_2的加入,TPS/SiO_2复合材料的热降解活化能增加。  相似文献   

2.
以天然高分子木薯淀粉为研究对象,低密度聚乙烯(LDPE)和纳米二氧化硅(SiO_2)为改性材料,甘油为增塑剂,通过熔融法制备了热塑性木薯淀粉(TPS)/LDPE/纳米SiO_2复合材料,研究了复合材料的塑化性能、力学性能、结晶性能、热稳定性和微观结构。结果表明:纳米SiO_2能提高TPS/LDPE复合材料塑化性能,更容易进行加工;随着纳米SiO_2用量的增加,复合材料的拉伸强度降低、断裂应变增加,复合材料的熔融焓、结晶度减小,热降解温度提高;纳米SiO_2的加入使得复合材料的球晶变得更细密,改变了复合材料的晶型;当纳米SiO_2用量为2份(质量份)时在复合材料中分散较好,但随着纳米SiO_2用量的增加会发生团聚现象。  相似文献   

3.
《塑料科技》2016,(12):21-26
通过熔融混合法制备了热塑性木薯淀粉(TPS)/聚乙烯醇(PVA)/二氧化硅(SiO_2)复合材料。利用差示扫描量热仪(DSC)、扫描电镜(SEM)、傅里叶红外仪(FTIR)研究SiO_2用量、表面改性前后对TPS/PVA/SiO_2复合材料回生动力学和结构的影响。结果表明:随着回生时间的增加,TPS/PVA/SiO_2复合材料的氢键作用增强,回生程度增加。利用Avrami方法进行回生动力学分析发现,当SiO_2用量为2和7份时可抑制TPS/PVA/SiO_2复合材料回生;而当SiO_2为5份时则促进TPS/PVA/SiO_2复合材料回生。表面改性后的SiO_2与木薯淀粉分子之间形成更强的氢键作用,比未改性SiO_2能起到抑制木薯淀粉回生作用。改性后SiO_2在基体材料均匀分散,且与基体材料具有较好的界面黏结力。  相似文献   

4.
通过熔融共混法制备热塑性木薯淀粉/二氧化硅(TPS/SiO_2)复合材料,通过差示扫描量热仪(DSC)研究回生过程中TPS/SiO_2复合材料的熔融焓和熔融峰变化,通过X射线衍射(XRD)和偏光显微镜(POM)研究晶型和球晶形态大小的变化规律,通过热重仪(TG)分析TPS/SiO_2复合材料的热降解行为,并进行自然降解测试。结果表明:随着回生时间增加,TPS/SiO_2复合材料的熔融焓增大、回生程度增加,热降解温度降低、自然降解率增加;球晶大小和晶型随着回生时间变化发生改变。在短期回生过程中,TPS/SiO_2复合材料以淀粉直链分子链结晶为主;在长期回生过程中,部分淀粉分子链发生断裂,有利于淀粉的回生程度提高,但随着回生时间进一步增加,淀粉分子链继续发生断裂降解,使得球晶结构完善程度下降。  相似文献   

5.
通过熔融法制备热塑性木薯淀粉(TPS)/聚乙烯醇(PVA)/二氧化硅(SiO_2)复合材料,并研究复合材料的加工性能和力学性能。结果表明,随着SiO_2用量增加,TPS/PVA/SiO_2复合材料的拉伸强度先上升后下降,当SiO_2用量为2份时复合材料的拉伸强度最高达到22.65 MPa;TPS/PVA-1799/SiO_2复合材料的拉伸强度高于TPS/PVA-1788/SiO_2复合材料的;经过表面改性的SiO_2有利于提高TPS/PVA/SiO_2复合材料拉伸强度。随着SiO_2用量的增加,TPS/PVA/SiO_2复合材料的塑化时间缩短,塑化扭矩和平衡扭矩增加。随着甘油用量的增加,复合材料的塑化时间、塑化扭矩和平衡扭矩均降低;添加PVA-1788和表面处理后SiO_2有利于提高TPS/PVA/SiO_2复合材料的塑化性能。  相似文献   

6.
以热塑性木薯淀粉(TPS)为研究对象,甘油或甲酰胺/尿素为增塑剂,通过熔融共混法制备TPS/聚乙烯醇(PVA)共混物,利用热重分析仪研究增塑剂种类、用量及PVA对TPS热降解行为的影响。结果表明:添加甘油的TPS热降解温度高于添加甲酰胺/尿素复配增塑剂;随着甘油用量的增加,TPS热降解温度降低;添加PVA后,TPS热降解温度降低,且随着PVA用量的增加而降低;TPS热降解过程分为3个阶段,TPS/PVA共混物的热降解分为4个阶段;随着升温速率的增加,TPS的热降解温度升高;采用Kissinger研究了TPS/PVA共混物的热降解动力学,PVA的加入降低了TPS的热降解活化能。  相似文献   

7.
以天然高分子材料木薯淀粉、剑麻纤维(SF)为原料、甘油为增塑剂,通过熔融共混法制备热塑性木薯淀粉(TPS)/SF复合材料,研究了TPS/SF复合材料的塑化行为、拉伸性能、熔融行为、热降解性、透光性和结构。结果表明:SF的加入使TPS/SF复合材料的塑化时间缩短、塑化扭矩和平衡扭矩增加;TPS/SF复合材料的拉伸强度呈现先增加后降低趋势;TPS/SF复合材料的熔融峰温度增加、熔融焓降低。随着SF用量的增加,TPS/SF复合材料的透光率呈现降低现象;添加SF后,TPS/SF复合材料热降解温度升高,SF削弱TPS/SF复合材料分子间的氢键作用,TPS/SF复合材料球晶变得模糊。  相似文献   

8.
通过熔融共混模压法制得了热塑性木薯淀粉(TPS)/SiO2复合材料。采用DSC、偏光(PLM)、水接触角、TG、SEM、FTIR、XRD考察了超声作用下不同粒径(0.02、0.2、23μm)SiO2对热塑性木薯淀粉的回生熔融焓、回生速率、回生指数及球晶形态结构、水接触角、热稳定性的影响。结果表明,超声作用使TPS/SiO2复合材料的熔融焓增加、回生速率提高、回生指数降低,且添加粒径0.02μm SiO2制得TPS/SiO2复合材料的回生速率提升幅度最大;超声作用使TPS/SiO2复合材料球晶变得明显、水接触角提高;超声作用使复合材料的水分容易挥发,甘油与淀粉的结合能力增强,淀粉的分子结构稳定性增加;超声作用使SiO2粒子在基体中聚集减少、分散更好;复合材料的回生程度增加,双螺旋结构减少;复合材料呈现出A+V晶型,超声作用后,复合材料V晶型增加、A晶型减少。  相似文献   

9.
以木薯淀粉为研究对象,通过熔融共混模压法制得热塑性木薯淀粉(TPS)/二氧化硅(SiO2)复合材料。研究超声作用下不同粒径(0.02 μm、0.2 μm、23 μm)二氧化硅对热塑性木薯淀粉的回生熔融焓、回生速率、回生指数及球晶形态结构、接触角、热稳定性的影响规律。结果表明,与未超声样品相比,利用差示扫描量热仪(DSC)发现经过超声作用后TPS/SiO2复合材料的熔融焓增加,回生速率提高、回生指数降低,且添加20 nm SiO2制得产物回生速率提升幅度最大;偏光(PLM)和接触角测试发现,经过超声作用后,TPS/SiO2复合材料球晶都变得明显、水接触角提高。TG分析表明,超声作用使复合材料的水分容易挥发,甘油与淀粉的结合能力增强,淀粉的分子结构稳定性增加。SEM分析表明,超声作用下使得二氧化硅粒子在基体中聚集减少、分散更好;采用FTIR分析发现,复合材料的回生程度增加,双螺旋结构减少;XRD分析表明,复合材料呈现出A+V晶型,超声作用后使得V晶型增加、A晶型减少。  相似文献   

10.
通过添加二氧化硅(SiO2)到木薯淀粉(TPS)中,采用熔融共混法制备热塑性TPS/SiO2复合材料,研究复合材料的吸水性、生物降解性和熔融行为。结果表明,随着SiO2添加量的增加,TPS吸水率呈下降趋势,且添加经过硅烷偶联剂(KH550)表面处理后的纳米SiO2比未处理的吸水率低。随着生物降解时间的增加,TPS/SiO2复合材料的生物降解率提高;随着SiO2用量的增加,TPS的生物降解率呈下降变化,且SiO2表面处理后能明显提高TPS的生物降解性。随着SiO2用量的增加,TPS的熔融峰增加,且添加SiO2表面处理后的TPS熔融峰比未经表面处理的SiO2高。  相似文献   

11.
热塑性木薯淀粉/PVA/SiO_2共混材料的稳定性能研究   总被引:1,自引:0,他引:1  
通过添加聚乙烯醇(PVA)、二氧化硅(SiO2)到木薯淀粉中,采用熔融密炼法制备热塑性木薯淀粉(TPS)/PVA/SiO2共混材料,研究共混材料的吸水性、生物降解与熔融行为。研究结果表明:随着SiO2用量的增加,TPS/PVA/SiO2共混体系的吸水率增加,TPS/PVA(1799)/SiO2共混材料的吸水率高于TPS/PVA(1788)/SiO2共混物。表面改性后SiO2的TPS/PVA/SiO2共混物的吸水率低于未改性SiO2。随着SiO2用量的增加,TPS/PVA/SiO2共混物的生物降解降低,共混物的熔融峰增高,而熔融焓降低。  相似文献   

12.
以甘油为增塑剂,采用熔融共混法制备热塑性木薯淀粉/剑麻纤维(TPS/SF)复合材料,研究碱处理和3-氨丙基三乙氧基硅烷(KH550)两种不同表面处理方法处理剑麻纤维对TPS结构与性能的影响。结果表明,添加碱处理剑麻的TPS/SF复合材料塑化性能较好,更容易进行加工;在力学性能、回生行为、热性能和结构方面,添加KH550处理的剑麻纤维TPS/SF复合材料拉伸强度和弹性模量较高,能更好抑制TPS回生,且热稳定性能更好,结构更稳定、更疏水。  相似文献   

13.
任童威  马宏鹏  郭斌  李盘欣 《塑料》2023,(4):41-44+91
为了进一步提高热塑性淀粉(TPS)的力学性能,用硅烷偶联剂KH-550对二氧化硅微球(SM)表面进行氨基化改性(SM-NH2),并且,添加至热塑性淀粉基体中,得到SM-NH2/TPS复合材料,研究了添加量对拉伸强度、冲击强度、动态力学性能、热稳定性和流变加工性能的影响。研究发现,当SM-NH2的添加量为2.0%时,复合材料的拉伸强度由3.25 MPa增大至9.28 MPa,冲击强度由6.222 kJ/m2增大至14.635 kJ/m2;玻璃化转变温度Tα达到最大,其值为53.67℃;微商热重曲线中最大分解速率对应的温度为321.8℃,热稳定性最佳;扭矩峰值和平衡扭矩分别为47.23 N·m和10.86 N·m,流变加工性能下降。  相似文献   

14.
《广州化工》2021,49(4)
采用硅烷偶联剂(KH550)对SiO_2进行表面改性,采用溶液共混法制备了SiO_2/TPU复合材料,探究了不同改性工艺条件对SiO_2的改性效果,以及SiO_2添加量对复合材料力学性能的影响。实验结果表明,反应时间4 h、温度60℃、KH550浓度40%时对SiO_2的改性效果最佳,并制备SiO_2/TPU复合材料,通过力学性能比较,添加量为1%时复合材料的综合力学性能较好,同时能提高热稳定性。  相似文献   

15.
选用壳聚糖(CH)和木薯(CA)淀粉为基本成膜材料,甘油为增塑剂,改性纳米SiO_2(NS)为增强剂,采用流延法制备壳聚糖-淀粉基复合膜,探究壳聚糖与木薯淀粉比例、甘油含量以及改性纳米SiO_2含量对复合膜性能的影响。通过正交试验采用极差分析并结合方差分析确定了纳米SiO_2/壳聚糖/淀粉复合膜的较优工艺条件。结果表明,壳聚糖与淀粉质量比6∶4,甘油含量35%,改性纳米SiO_2含量2%。在此条件下,复合膜的各项性能分别为:拉伸强度32.43 MPa,断裂伸长率38.98%,透光度19.96,水蒸气透过率10.53×10~(-11)/(m·s·Pa)。该复合膜与不添加改性纳米SiO_2的复合膜相比其力学强度增加了158.41%,水蒸气透过率减小了13.48%,复合膜力学强度和耐水性能有明显的改善。  相似文献   

16.
采用L_9(3~3)正交试验对α–淀粉酶降解聚丁二酸丁二酯(PBS)基共聚酯/热塑性淀粉(TPS)复合材料的条件进行了优化,得出α–淀粉酶的最优降解条件为:温度65℃,磷酸盐缓冲液p H=6.8,α–淀粉酶浓度3.5 g/L。利用α–淀粉酶和南极假丝酵母脂肪酶N435对PBS/TPS、聚(丁二酸丁二醇-co-丁二酸二甘醇)酯(PBS-co-DEG)/TPS、聚(丁二酸丁二醇-co-丁二酸乙二醇-co-丁二酸聚乙二醇200)酯(PBES-co-PEG200)/TPS、聚(丁二酸丁二醇-co-丁二酸乙二醇-co-丁二酸聚乙二醇400)酯(PBES-co-PEG400)/TPS复合材料分别进行降解实验,研究了两种酶对这4种复合材料降解性能的影响。结果表明,α–淀粉酶和N435脂肪酶对复合材料均有较好的降解能力,当降解时间较短(6 h)时,α–淀粉酶对复合材料的降解效果优于脂肪酶N435,但当降解时间超过60 h后,后者的降解效果略优于前者;(PBES-co-PEG200)/TPS和(PBES-co-PEG400)/TPS复合材料的降解性能总体上优于(PBS-coDEG)/TPS及PBS/TPS复合材料;随PEG200和PEG400在共聚酯中的含量增加,即醚链含量的增加,相应复合材料的质量损失率呈升高趋势,但当醚链含量较高时,复合材料的质量损失率反而有所下降。  相似文献   

17.
首先用马来酸酐(MA)对小麦秸秆(WS)表面进行预处理,再经双螺杆挤出机在高温剪切作用下与玉米淀粉及增塑剂共混制备马来酸酐改性秸秆增强热塑性淀粉(MA-WS/TPS)复合材料,研究了MA的用量对MA-WS/TPS的力学性能,断面形貌,热稳定性和耐水性的影响。结果表明,WS经不同用量的MA改性后, 以1wt% 添加于MA-WS/TPS中,使复合材料的性能改善明显。当MA用量为4wt%时,其拉伸强度和断裂伸长率达到最佳(2.76MPa和158.24%);热稳定性方面,MA改性使WS/TPS复合材料的最大热分解速率有所提高;此外,接触角结果表明, MA处理使得复合材料的耐水性显著提高,当MA用量为6wt%时,接触角可达到83.6°。综合性能以MA含量4wt%制得的复合材料最优。  相似文献   

18.
采用自制松香基超分散剂(RA-g-PEG)改性聚丙烯(PP)/剑麻纤维素微晶(MCF)复合材料,探讨了RA-g-PEG的用量对PP/MCF复合材料的力学性能、热性能和熔体流动速率的影响,并采用扫描电镜(SEM)对PP/MCF复合材料冲击断面形貌的微观结构进行表征。结果表明,与未经RA-g-PEG改性的PP/MCF复合材料相比,添加RA-g-PEG后复合材料的冲击强度有所提高。其中添加质量分数5%的RA-g-PEG改性后,复合材料的冲击强度由1.45kJ/m2提高到了4.52kJ/m2。但PP/MCF复合材料的热分解温度和流动性略有降低。  相似文献   

19.
采用熔融法制备热塑性木薯淀粉(TPS)/聚乙烯醇(PVA)复合材料,研究PVA和增塑剂的种类、用量对TPS/PVA复合材料的加工、力学性能、回生行为及结构影响。研究结果发现随着PVA用量的增加,TPS/PVA复合材料的塑化时间缩短、塑化扭矩和平衡扭矩增大;随着甘油增塑剂用量的增加,TPS/PVA复合材料的塑化时间、扭矩降低。TPS/PVA-1788复合材料的塑化时间、塑化扭矩和平衡扭矩均比TPS/PVA-1799复合材料的小;采用尿素/甲酰胺复配增塑TPS/PVA复合材料的塑化时间、塑化扭矩和平衡扭矩比使用甘油小。随着PVA用量的增加,TPS/PVA复合材料的拉伸强度增加;TPS/PVA-1799复合材料的拉伸强度比TPS/PVA-1788复合材料的高。使用甘油增塑TPS/PVA复合材料的拉伸强度高于使用尿素/甲酰胺复配增塑剂。随着回生时间增加,TPS/PVA复合材料的回生焓增加。添加PVA加速TPS的回生过程,随着PVA用量进一步增加,TPS/PVA复合材料回生降低。PVA能削弱TPS的氢键作用,提高TPS塑化程度,有利于TPS/PVA复合材料的均匀性。  相似文献   

20.
付倩  郑雨欣  黄兆阁 《塑料》2023,(6):82-87
采用熔融共混法制备了PLA/PBAT/木薯淀粉生物基降解材料,分析了木薯淀粉、丙三醇和扩链剂含量对聚乳酸(PLA)和聚己二酸/对苯二甲酸丁二酯(PBAT)共混比为80/20复合材料的结晶性能、流变性能和力学性能的影响。结果表明,木薯淀粉的加入能显著提高复合材料的结晶度,当添加10份木薯淀粉时,结晶度为26.43%,与未添加时相比,提高了72.5%;丙三醇能改善共混物的加工性能和韧性,当木薯淀粉为20份、丙三醇为2份时,材料的平衡扭矩下降27.3%,断裂伸长率由13.6%提高至30.4%,增大了123.5%;当扩链剂含量1.0份时,储能模量和复数黏度的最大值分别提高了291.4%和75.5%,并且,复合材料的力学性能最佳,断裂伸长率为45%,冲击强度为42.9 kJ/m2,与未添加时相比,分别增大了48%、119%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号