首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 228 毫秒
1.
埋地热油管道停输径向温降规律研究   总被引:7,自引:1,他引:6  
热油管道的计划检修和事故抢修是在管线停输情况下进行的.停输后,管内存油油温不断下降,存油粘度随油温下降而增大,当增大到一定值后,会给管道再启动带来极大的困难,甚至会造成凝管事故.热油管道不仅存在轴向温降,而且还存在径向温降.为了确保安全经济地输油,在得出停输后轴向温降规律的基础上,还必须研究管路停输后的径向温降情况,以便更准确地确定允许停输时间.根据热油管道停输后油品轴向温降公式和径向传热规律,提出了传热定解问题并对其进行数学求解,得出了管道中油品径向温度的解析解,并编制了相应的软件,从而为更合理地确定在不同季节安全停输时间提供了科学计算依据.  相似文献   

2.
热油管道停输温降规律的研究是确保管线安全启动的首要条件。埋地长输管道沿线地质条件复杂, 常穿越河流、湖泊,导致部分管线水下敷设,由于没有周围土壤的蓄热作用,在停输过程中水下管段的温降往往决定 了整条管线的停输时间。随着海上油气的开采,水下管道安全停输规律的研究显的更为重要。利用FLUENT 软 件,采用“焓-多孔度”技术模拟水下管道停输过程管内原油温降规律并考虑了原油凝固潜热对温降的影响,得出了 不同时刻管内原油凝固区、混合区、液油区的位置。结果表明,管道停输初期管内原油温度整体下降较快,中后期由 于原油凝固释放潜热且凝油层厚度不断增加,热阻增大,大大降低了原油温降速率,模拟结果与实际吻合较好。  相似文献   

3.
埋地热油管道停输三维非稳态传热过程的数值模拟   总被引:1,自引:1,他引:0  
针对埋地热油管道停输过程进行研究,结合有限差分法和有限容积法建立埋地热油管道正常运行及停输过程的非稳态传热模型,考虑了管道正常运行及停输过程中管内原油粘度,密度,比热,导热系数随温度的变化关系,同时考虑了停输过程原油凝固潜热对温降的影响,地表温度采用周期性边界条件,数值模拟了埋地热油管道运行至第二年3月末停输温降过程。研究表明,随着停输时间的延长,管道沿线各截面处管内原油固化过程各异且土壤温度场变化明显,确定合理停输时间,为管道安全启动提供理论指导。  相似文献   

4.
埋地热油管道停输轴向温降规律研究   总被引:6,自引:0,他引:6  
热油管道的计划检修和事故抢修都在管线停输情况下进行,停输后,管内存油油温不断下降,存油粘度随油温下降而增大,当粘度增大到一定值后,会给管道输送再启动带来极大的困难,甚至会造成凝管事故.为了确保安全经济地输油,必须研究管路停输后的温降情况,以便确定允许停输时间.根据热油管道停输后油品和管道周围土壤的热力变化工况,提出了传热定解问题并对其进行数学求解,得出了管道中油品轴向温度随时间和距离变化的解析解,并编制了相应的软件,从而为更合理地确定在不同季节安全停输时间提供了科学计算依据.  相似文献   

5.
对集肤效应电伴热管道停输再启动过程进行了研究。考虑管道正常运行及停输过程中管内原油粘度、密度、比热容、导热系数随温度的变化情况,同时考虑停输过程中的原油凝固潜热对温降的影响,对集肤效应电伴热管道加热到输送温度的过程进行了数值模拟,数值模拟结果可为确定合理的停输再启动时间、管道安全启动提供理论指导。  相似文献   

6.
海底管道停输温降直接决定着海管置换与掺水输送时机,以及停输后能否顺利再启动。为了研究海管各覆盖层的蓄热对停输温降的延缓作用,通过理论分析各层相对流体的蓄能能力大小,模拟计算钢管和土壤蓄热对不同类型管道停输后温降的影响情况,并以渤海两条实际管道为例优化输送方案。结果表明,钢管蓄热总量约为所输原油蓄热总量的一半,所输水量的1/4,所输天然气的4~16倍(根据系统压力的不同);钢管和土壤的蓄热散热对流体停输温降均有一定的延缓作用。对于保温管道,钢管的蓄热散热具有主导作用;不保温管道,土壤的蓄热散热影响很大;对于渤海油田常见的输油海管,考虑钢管的蓄热散热能提高管线出口温度3.5~13.5 ℃;对于混输保温管道,当气油比(GOR)大于10时,钢管蓄热对停输温降的延缓作用尤为明显,有利于安全顺利输送;考虑土壤或钢管的蓄热散热对停输温降的影响可以延缓或取消掺水输送。  相似文献   

7.
易凝高黏原油在加热输送过程中热量损耗严重, 遇故障停输后热量的散失更为迅速, 当所需停输的 时间超出安全停输时间时就会发生事故。因此, 研究原油的热力计算对管道的安全运行具有重要意义。对比了冬 夏两季原油停输温降的变化规律, 在停输时间不同的条件下, 对温降进行了数值模拟, 计算出原油停输前所需的出 站温度。对停输后的土壤和管道的温度场进行了三维数值模拟, 找出了出站温度不同时停输后原油和土壤温度场 的变化规律。在出站温度达到一定值后, 原油在所需的停输时间内可以保证安全再启动, 不会发生事故或造成安全 隐患。  相似文献   

8.
保温层失效比例对热油管道安全停输时间的影响   总被引:1,自引:1,他引:0  
针对热油管道的保温层由于特定原因而出现部分失效,进而导致在维修过程中安全停输时间难以控制的问题,结合有限容积法,建立了热油管道二维、非稳态模型。该模型考虑了凝固潜热的影响,对比分析了热油管在5种情况(即保温层未失效、1/8失效、1/4失效、1/2失效及全部失效)下的温降规律。在此基础上,运用SPSS软件,拟合了停输时间与热油的平均温度的关系曲线,最终确定了上述5种情况下的安全停输时间。研究结果表明,5种情况下管内热油温降规律基本相似,且安全停输时间分别为205、148、118、99和74h;由于凝固潜热弥补了部分散热损失,因此1/4失效和1/2失效情况下的安全停输时间差仅为19h。  相似文献   

9.
安全停输时间的数值计算   总被引:9,自引:0,他引:9  
输油系统出现故障,进行抢修或是输油设备进行定期维修都要求停输。停输可作为输油管道运行管理的一种手段,但停输引起的一些问题也应特别注意,尤其是如何确定安全停输时间成为停输工艺的关键。热油管道停输后,管内存油的温度下降,粘度上升。当存油温度降到一定程度时,管道再启动工作就会变得十分困难,甚至发生凝管事故。输油管道安全停输时间计算的准确与否直接影响到管线安全运行及效益,该项计算极其复杂,需要综合考虑整个输油系统各方面的因素。根据热油管道的流动特征,建立了热油管道停输数学模型,并用追赶法计算安全停输时间,从而为指导生产防止凝管事故发生提供了科学的依据。计算结果与实测数据基本相符  相似文献   

10.
裸露管线温降规律研究   总被引:2,自引:0,他引:2  
裸露原油管线停输后,由于管道中油的热容量要比周围土壤的热容量小得多,所以冷却速度要比埋地管道快得多,成为限制允许停输时间的关键。根据裸露热油管道的热力及水力特征,建立了管道停输后的温降数学模型。将模型简化后采用有限差分方法,把热传导偏微分方程转化为线性方程组后,用迭代法求解。编制了停输温降温度场的程序框图,以实际管道为例计算出不同停输时间管道内的温度分布值。将管线停输后管中心、1/2半径及管壁处温度进行比较,制定出可行的管线间歇输送方案。  相似文献   

11.
针对影响海底输油管道停输的因素复杂,难以对管道安全停输时间做出准确判断的问题,提出了海底输油管道安全停输时间预测的径向基函数(RBF)神经网络模型,综合考虑了各因素对输油管道安全停输的影响。以实测数据为基础,训练网络并验证了模型的预测准确性。研究结果表明,径向基函数神经网络预测模型对训练样本的拟合精度和对验证样本的仿真精度分别达到98.40%和97.33%,可对海底输油管道安全停输时间进行有效预测,为海底输油管道的安全输送提供重要依据。  相似文献   

12.
采用OLGA软件建立了某油气混输管道几何模型,研究了管道停输和再启动过程中的瞬态流动规律。首先,分析了管道稳态运行时沿线温度、压力和持液率的分布特点,确定了沿线温度最小值所处位置及压力最大值所处位置,分析了环境温度和停输时间对运行参数的影响,确定了可保证温度最低点处原油温度高于其凝点的安全停输时间。在实际运行过程中,停输时间不应超过安全停输时间,否则容易出现管道凝管、启动压力过大等问题,威胁管道的安全运行。  相似文献   

13.
利用Fluent流体分析软件模拟海底管道停输温降过程,分析不同初始油温、不同环境温度下的温降过程,得出了与实际吻合较好的温降曲线。计算结果表明,管道停输0~20h温降速度很快,主要是因为该阶段管内原油的自然对流较强烈。停输20h后的一段时间内温降缓慢,降温在5℃以内,这是因为管内原油接近临界温度,原油黏度增大及蜡晶析出,使得自然对流强度减弱。初始油温和海水温度对停输温降影响非常明显。  相似文献   

14.
结合裸露管线的热力特性,建立管道停输时非稳态传热模型,分别计算了原油物性参数随温度变化和不随温度变化两种条件下的安全停输时间。结果表明,在原油物性参数不随温度变化的条件下所得结果与实际停输情况有很大差别,因此应考虑物性参数随温度的变化。在原油物性参数随温度变化的情况下,改变影响停输温降的因素如停输起始油温、环境温度、保温层厚度,计算了不同条件下的安全停输时间。计算结果表明,停输起始油温以及保温层厚度逐渐增大且增加幅度相同时,安全停输时间增加的幅度基本相同;外界环境温度逐渐升高且增加幅度相同时,安全停输时间的增长幅度越来越大。  相似文献   

15.
架空原油管道停输期间温降及原油凝固界面推进   总被引:5,自引:0,他引:5  
由于架空原油管道没有土壤的蓄热来减缓管内原油的热散失,架空原油管道的温降过程往往成为决定整条管道允许停输时间的关键。根据原油温度划分管内原油为纯液油区、凝油区和纯固油区,并假设凝油区以已凝固原油、固体骨架和液态原油为填充相的多孔介质区域,该区域随着温降过程向管心推移。考虑了凝固潜热和空气横掠管道对流换热对原油温降过程的影响,建立了空气、管道与原油相互耦合的传热模型,并进行了数值模拟,数值结果表明停输前期管内原油的温度整体下降较快;在停输中后期,由于凝固潜热的释放,凝油厚度增加使得热阻增大,大大减缓了原油温度的降低;对流换热系数沿管道周向分布不均,导致管内原油温度周向分布不均和凝固界面中心偏离管道中心。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号