首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sagar Lake is situated in the middle of the Sagar City in the Vindhyan terrain of Bundelkhand region of India at an elevation of 517 m above mean sea level. The lake surface area and volume are 145 × 104 m2 and 389 × 104 m3 at full tank level. Sedimentation rates and pattern in the lake have been estimated using 137Cs and 210Pb radiometric dating techniques. The lake has been subdivided into eight zones on the basis of sedimentation rate and under water topography. The sedimentation rate in the lake has been found to vary between 0.30 and 1.08 cm/a depending upon the location. The estimated mean sedimentation rate is 0.58 ± 0.028 cm/a. The observed sedimentation pattern reveals that the sedimentation rate decreases from near shore to far shore and minimum at the deepest part of the lake. The estimated useful life of the lake based on Post-1964 average sedimentation rate is around 467 ± 23 years.  相似文献   

2.
Irrigation of pasture forms the greatest single use of irrigation water in Australia yet there has been little monitoring of its spatial extent and water demands across southeast Australian coastal catchments where irrigated dairy farming forms an important rural livelihood. This paper provides an analysis of spatio-temporal patterns in the extent of irrigated pasture in the Bega–Bemboka catchment on the south coast of New South Wales from Landsat imagery, and establishes quantile regression relationships between metered monthly irrigation abstraction volumes, evaporation and rainfall. Over the metering period (2000–2007), annual water usage averages 4.8 ML ha − 1 year − 1, with January being the month of highest demand with an annualised usage of 10.4 ML ha − 1 year − 1. Analysis of Landsat imagery indicates that the spatial extent of irrigated pasture across the catchment has increased from 1266 ha in 1983 to 1842 ha by 2002, together with amalgamation of smaller holdings along less reliable streams into larger parcels along the trunk stream. Quantile regressions to estimate monthly mean and maximum abstraction volumes from monthly evaporation and rainfall data indicate that abstraction volumes are more closely correlated with evaporation. When combined with Landsat analyses of the spatial extent of irrigated areas, such relationships enable estimation of catchment-scale hydrological effects of irrigation abstractions that in turn can help guide regional-scale assessments of the ecological effects and sustainability of spatially and temporally changing irrigation abstraction volumes.  相似文献   

3.
Groundwater is the only source of drinking water for the inhabitants of the Kalahari. Thus understanding spatial and temporal variations in groundwater recharge is very important and a regional-scale water balance model has therefore been set up for a 209,149 km2 catchment in north-eastern Namibia and north-western Botswana. The model has a spatial resolution of 1.5 × 1.5 km, daily model time-steps, and climatic input parameters for 19 years are used. The distributed, GIS-based, process-oriented, physical water balance model (MODBIL) used in this study considers the major water balance components: precipitation, evapotranspiration, groundwater recharge, and surface runoff/interflow. Mean precipitation for the study area is 409 mm a−1, while mean actual evapotranspiration is 402 mm a−1 and mean groundwater recharge is 8 mm a−1 (2% of mean annual precipitation). The recharge pattern is mainly influenced by the distribution of soil and vegetation units. Groundwater recharge shows a high inter- and intra-annual variability, but not only the sum of annual precipitation is important for the development of groundwater recharge; a large amount of precipitation in a relatively short period is more important. Published independent data from the Kalahari in Namibia, Botswana and the Southern African region under similar climatic conditions are used to verify the modelling results.  相似文献   

4.
岱海湖温排水对湖面附加蒸发量影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
岱海湖为一内陆封闭型湖泊。本研究利用3、7、12月份冬夏工况,综合考虑岱海湖边界条件,水面温度、密度、水面天然温度、大气温度、相对湿度等影响因子,构建温排水对岱海湖附加蒸发量影响的计算公式。经计算,电厂温排水引起的岱海湖附加蒸发损失量为:3月份为39.46万m3,7月份为73.3万m3,12月份为10.6万m3,岱海湖电厂温排水年附加蒸发水量约为678.2万m3/a。结果表明:附加蒸发量与电厂温排水量变化一致。本研究对干旱区水资源利用具有重要意义。  相似文献   

5.
From 1950s to 1980s, various observational studies around the globe found a significant decrease in surface solar radiation (SSR), which reversed in late 1980s for most of the countries including India. SSR observations at 12 stations located across India revealed that a much stronger dimming has reappeared during the last decade (2006–2015) after a brightening during 1996–2005. In the present study, effects of renewed solar dimming on actual evapotranspiration and runoff were analyzed using a semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) in 24 river basins (ranging from 1260 to 40000 km2) located in peninsular India. For these river basins, calibration (2003–2009) and validation (2010–2014) were performed using the observed daily discharge data, obtained from water resources information system (WRIS) of India, with a 3 year warm up period (2000–2002). The sequential uncertainty domain parameter fitting algorithm (SUFI-2) of SWAT-CUP (calibration and uncertainty program) was used with modified Nash–Sutcliffe efficiency (MNS) as the objective function to calibrate 13 model parameters, which can potentially affect streamflow. In nearly all the river basins, the p- and r-factor of 95 percentage prediction uncertainty (PPU) were more than 0.7 and less than 1, respectively. At daily timescale, MNS values were more than 0.5 in most of the river basins, reaching up to 0.66 and 0.71 during calibration and validation periods, respectively. Calibrated model was used to analyze the water balance of these river basins and different sets of experiments (with observed SSR trends) were performed to find SSR impacts on it. The model was simulated with and without the observed declines in SSR trends. The average change in SSR (in terms of evaporation equivalent) was −267.93 ± 100.92 mm/day/year (−5.62 ± 2.12%) with maximum reaching up to −417.12 mm/day/year (−8.99%). Due to this SSR change, actual evaporation was reduced resulting in 18.97 ± 9.78 mm/day/year (4.13 ± 2.50%) change in percolation. The percolation changes were higher for river basins having areas covered by forests and cropland/woodland, and having loam and sandy-clay soils. The increase in runoff generated was 6.90 ± 3.42 mm/day/year (2.14 ± 1.58%) with a maximum of 15.25 mm/day/year (7.56%) whereas corresponding increase in streamflow was found to be 9.93 ± 5.27 mm/day/year(4.21 ± 2.38%) with a maximum of 26.71 mm/day/year (11.86 %). The study reveals that the recent observed SSR changes are significant enough to have resulted in increased streamflow in the monsoon dominated tropical river basins of India.  相似文献   

6.
The hydrological cycle, a fundamental component of climate is likely to be altered in important ways due to climate change. In this study, the historical daily runoff has been simulated for the Chenab River basin up to Salal gauging site using a simple conceptual snowmelt model (SNOWMOD). The model has been used to study the impact of plausible hypothetical scenarios of temperature and rainfall on the melt characteristics and daily runoff of the Chenab River basin. The average value of increase in snowmelt runoff for T + 1°C, T + 2°C and T + 3°C scenarios are obtained to be 10, 28 and 43%, respectively. Whereas, the average value of increase in total streamflow runoff for T + 1°C, T + 2°C and T + 3°C are obtained to be 7, 19 and 28%, respectively. Changes in rainfall by −10 and + 10% vary the average annual snowmelt runoff over the T + 2°C scenario by −1% and + 1% only. The result shows that melt is much more sensitive to increase in temperature than to rainfall.  相似文献   

7.
付亚丽  许志敏 《人民长江》2011,42(19):28-30
为了对非天然入湖径流过程的湖泊进行径流还原计算,以云南杞麓湖为例,分析并确立了湖泊径流还原的水量平衡模式,即同时考虑出流量、调离水量、工业、农业、生活用水以及蒸发水量的还原模式。同时还介绍了对现状入湖径流结果的一致性订正方法,并最终得到了杞麓湖天然入湖径流量。计算结果表明,所提出的方法具有一定的普遍性与适用性;且得到的结果可以为湖泊的径流调节提供近似天然状态下的径流系列。  相似文献   

8.
Gully erosion is one of the most complicated and destructive forms of water erosion. In order to prevent this erosion, the important factors controlling gully heads must be understood. This paper examines gully head advancement in the Hableh Rood Basin, Iran by (1) observing gully head advance between 1957 and 2005 using field studies, aerial photography and GIS analysis and: (2) applying and evaluating widely used experimental models including the, Thompson (Trans ASAE 7(1):54–55, 1964), SCS (I) and SCS (II) models, for estimating migrating headcuts over the study period. The results showed that the highest mean gully advancement (0.26 m year − 1) took place during the 1956–1967 period, with most gullies having lower and steady headcut retreat rates between 1967–2000 (0.21 m year − 1) and 2000–2005 (0.15 m year − 1). This suggests that the majority of gullies in the study area were still in the early stages of formation in the first study period and their formation may be linked to land use or climatic changes pre 1956. Analysis of the correlation between environmental characteristics of the study area and gully advancement indicated that the upslope area of head cuts and soluble mineral content of the soil were the two most important factors influencing the spatial and temporal variation of gully longitudinal development. Results of multiple regression revealed that the simple relation including upslope area and soluble minerals can explain 93% of total variance and relatively reflects the effects of runoff and waterfall process for headcut retreat. Application of statistical error analysis to evaluate the four gully advancement models showed that in comparison to other models, the second model of SCS has more reliable results for predicting longitudinal gully advancement in this study area and other similar regions. However, this study indicates that future modelling in the region should consider the role of soil soluble mineral content in predicting gully advancement.  相似文献   

9.
Naoli river basin(NRB), with an area of 24,863 km2, is the largest basin and also the largest marsh distribution area in Sanjiang Plain, Heilongjiang, China. The hydrological evolution process of wetland in NRB has made a marked ecological responses for anthropic activities, also reflects the drying trend of the Sanjiang Plain, Northeast China. Global climate warming also contributes to the hydrological evolution process. The following key research results are obtained: (1) The monthly average water level of Naoli river at Caizuizi hydrological station in different ages showed a marked decline tendency, the annual mean water level dropped from 96.63 m during 1960–1969 to 95.59 m during 2000–2005, the water level drawdown is 1.04 m; (2) The annual runoff flowing into wetlands in NRB decreased. Duration of Naoli river and its tributaries being thoroughly frozen from riverbed to river-water-surface showed an prolonged trend, and the water level drawdown in frozen seasons increased. The water storage capacities of wetlands in NRB declined. (3) The interactions between ground water and surface water in wetland areas are close. The ground water level variation span is bigger than that of surface water level in wetland areas of NRB. The drawdown of ground water level promotes the surface water level to decline, correspondingly. In recent 20 years, the cultivated area extension of rice field in upstream NRB has made an adverse influence on the hydrological processes of wetlands. (4) The wetland area decrease and farmland area increase significantly contribute to the runoff depth decrease of wetlands in NRB. The runoff depth variability has been mostly posed by anthropic activities. (5) Reservoirs, ditches and dykes in NRB have greatly changed the runoff generation processes. Thickness of the seasonal frozen soil layer becoming thinner and the evaporation potential becoming bigger also contribute to the runoff depth reduction and the water level drawdown of rivers. The present study results will provide a scientific basic for developing an integrated watershed management program for NRB, especially, restoring the wetland hydrological processes, maintaining or improving the wetland structure and enhancing the wetland service functions.  相似文献   

10.
A dynamic systems simulation model of water resources was developed as a tool to help analyze alternatives to water resources management for the Piracicaba, Capivari and Jundiaí River Water Basins (RB-PCJ), and used to run six 50-year simulations from 2004 to 2054. The model estimates water supply and demand, as well as contamination load by several consumers. Six runs were performed using a constant mean precipitation value, changing water supply and demand and different volumes diverted from RB-PCJ to RB-Alto Tietê. For the Business as Usual scenario, the Sustainability Index went from 0.44 in 2004 to 0.20 by 2054. The Water Sustainability Index changed from 74% in 2004 to 131% by 2054. The Falkenmark Index changed from 1,403 m3 person − 1 year − 1 in 2004 to 734 m3 person − 1 year − 1 by 2054. We concluded that sanitation is one of the major problems for the PCJ River Basins.  相似文献   

11.
In the last 5 years, Lake Victoria water level has seen a dramatic fall that has caused alarm to water resource managers. Since the lake basin contributes about 20% of the lakes water in form of discharge, with 80% coming from direct rainfall, this study undertook a satellite analysis of the entire lake basin in an attempt to establish the cause of the decline. Gravity Recovery And Climate Experiment (GRACE), Tropical Rainfall Measuring Mission (TRMM) and CHAllenging Minisatellite Payload (CHAMP) satellites were employed in the analysis. Using 45 months of data spanning a period of 4 years (2002–2006), GRACE satellite data are used to analyse the variation of the geoid (equipotential surface approximating the mean sea level) triggered by variation in the stored waters within the lake basin. TRMM Level 3 monthly data for the same period of time are used to compute mean rainfall for a spatial coverage of .25°×.25° (25×25 km) and the rainfall trend over the same period analyzed. To assess the effect of evaporation, 59 CHAMP satellite’s occultation for the period 2001 to 2006 are analyzed for tropopause warming. GRACE results indicate an annual fall in the geoid by 1.574 mm/year during the study period 2002–2006. This fall clearly demonstrates the basin losing water over these period. TRMM results on the other hand indicate the rainfall over the basin (and directly over the lake) to have been stable during this period. The CHAMP satellite results indicate the tropopause temperature to have fallen in 2002 by about 3.9 K and increased by 2.2 K in 2003 and remained above the 189.5 K value of 2002. The tropopause heights have shown a steady increase from a height of 16.72 m in 2001 and has remained above this value reaching a maximum of 17.59 km in 2005, an increase in height by 0.87 m. Though the basin discharge contributes only 20%, its decline has contributed to the fall in the lake waters. Since rainfall over the period remained stable, and temperatures did not increase drastically to cause massive evaporation, the remaining major contributor is the discharge from the expanded Owen Falls dam.  相似文献   

12.
白洋淀湿地水文水资源变化趋势分析   总被引:8,自引:0,他引:8  
通过分析白洋淀湿地1956~2000年的降雨、蒸发、入淀水量、出淀水量和水位数据,研究了降雨与蒸发的变化规律、入淀水量与流域降雨量的关系、水位变化趋势等,分析了白洋淀湿地的水文变化情势,阐明了湿地水资源退化的内因是上游入淀径流减少,提出为了维持湿地的生态平衡,缓解干淀危机,必须进行人工调水。  相似文献   

13.
The volume of inflowing water needed to meet multiple demands in the Yellow River Estuary of China was examined and quantified. Pressure on available environmental flows comes from varied ecological objectives, including maintenance of freshwater habitat for hundreds of plant and animal species, salinity balance, sediment transport and general equilibrium of the hydrologic cycle. Temporal fluctuations of flow input and output were considered and the amount of water needed for both consumptive and non-consumptive uses was evaluated. The rule of summation was used to calculate consumptive water requirements and the rule of compatibility (i.e., maximum principle) was adapted to estimate the non-consumptive ones. It was determined that the minimum, medium and high levels of annual environmental flows are 134.22 × 108, 162.73 × 108 and 274.9 × 108 m3, respectively, in the Yellow River Estuary, which represent 23.7, 28.7 and 48.5% of the natural river discharge. Water requirements differ across months. The months of May through June, August and October were identified as the most critical periods for maintaining the environmental flows. The basic purpose of water entering the system is to compensate for water losses due to evaporation and to maintain an acceptable level of salinity in the estuary. Sediment transport into and through the estuary area are likely to be directly impacted by variations in river discharge. Improved efficiency in the sediment transport regime of the Yellow River could potentially reduce environmental flow requirements of the estuary, thus freeing water resources for other beneficial uses.  相似文献   

14.
长江与鄱阳湖水文关系及其演变的定量分析   总被引:2,自引:0,他引:2  
胡振鹏  傅静 《水利学报》2018,49(5):570-579
鄱阳湖蓄水受到自身流域来水和长江流量的双重影响,利用长江汉口和鄱阳湖星子水文监测资料,统计分析后得到长江与鄱阳湖量化的水文关系:(1)如果汉口流量小于15 000 m~3/s,长江对鄱阳湖出流影响不明显,鄱阳湖基本上自由出流,湖水位变幅较大。(2)如果汉口流量超过18 000 m~3/s,长江对鄱阳湖出流顶托作用明显,汉口流量越大,顶托越显著,因顶托而滞蓄在湖盆的水量可达31.9%~81.4%。(3)如果星子水位10.5~16.5 m且汉口流量大于20 000 m~3/s,出现长江向鄱阳湖倒灌的可能性较大;星子水位低于8 m或鄱阳湖主汛期一般不会发生倒灌。2000年以后鄱阳湖与长江水文关系发生了一些变化,主要表现在长江对鄱阳湖出流顶托作用弱化,鄱阳湖枯水期提前并延长,湖水位日涨落幅度增大。定量研究这些关系,对于鄱阳湖水资源利用、水环境和水生态保护具有重要作用。  相似文献   

15.
青藏高原的内陆湖泊水位和冰川变化和其流域内冰川质量亏损对湖泊水位波动的影响及其贡献对水量平衡研究具有重要意义。以哈拉湖流域冰川为例,基于2000-2015年星载雷达测高资料和Landsat卫星多光谱遥感资料分别提取湖泊水位和面积变化;结合附近的托勒台站气象观测资料,进一步分析其水位波动变化原因和冰川亏损对湖泊水量贡献。结果表明:受年降水量和夏季降水量增加影响,哈拉湖水位呈增加趋势,但哈拉湖流域冰川亏损加速趋势不明显;与2000年相比,湖泊面积增加了(21.4±4.8)km~2,湖泊水位增加了(1.68±0.26)m,相应的湖泊水容量增加了(16.1±0.3)×10~8m~3水当量。流域冰川亏损量达对哈拉湖水量的贡献率为39.65%,降水量增加对湖泊水量贡献了22.82%。  相似文献   

16.
若尔盖高原的降水量微弱减少与蒸发量持续上升,使若尔盖高原径流量与储水量逐年降低,直接减少了若尔盖高原的湿地面积和对黄河上游径流量的补给。基于红原、若尔盖和玛曲站的气象数据和7个水文站的径流量数据(1981-2011年),并对数据序列进行插补与计算,获得若尔盖高原的径流量变化与气候因子的响应关系,进而计算储水量变化。计算结果表明:若尔盖高原向黄河年均补水(67. 08±14. 90)×108m3,并以0. 48×108m3/a速率持续减少。降水量每减少1 mm将导致黑河与白河的年径流量分别减少0. 02×108和0. 05×108m3。蒸发量每增加1 mm将导致黑河与白河的年径流量分别减少0. 12×108和0. 27×108m3。1981-2011年若尔盖高原的年均储水量为(59. 30±18. 69)×108m3,其年均递减速率为0. 49×108m3/a。本研究有助于认识若尔盖高原对于黄河上游水资源保障的重要性。  相似文献   

17.
由于乌伦古河河川径流具有连续枯水年且枯水时段长的特点,且乌伦古河在连续枯水年份出现断流是一种不可抗拒的自然因素,需要在流域综合规划指导下,具体研究吉力湖和布伦托海入湖水量及水位变化情势,尽可能恢复乌伦古河流域原有生态,保障洄游性鱼类所需要的流量要求,显著减少布伦托海湖水向吉力湖倒灌发生的时间和倒灌水量,使乌伦古湖和周边生态系统有所好转。  相似文献   

18.
大通河位于祁连山区,开发利用程度低,实测径流基本为天然径流,1956—2000年平均径流量28.95亿m~3。在全球气候变暖的背景下,降雨-径流关系发生了明显的改变,以水文气象要素明显的分界点1997年进行分时段比较,汛前径流明显衰减,汛后上游径流明显增加,中下游径流有一定减少,年均水资源减少1.72亿m~3。选择受冰川融水和冻土释水影响较小的中下游区间来水分析,得到蒸发增加减少径流深38 mm。基于上中游分阶段径流比较认为,枯季径流的增加来自冻结层下水的稳定释水,春季径流的减少由季节性冻土释水疏干和陆面蒸发增加导致,夏秋季径流的增加主要是冰川融水和冻结层上水转化成冻结层下水减少沼泽消耗所致。综合分析认为,随着气温的继续升高,冰川融水消失,冻结层上水进一步转化,伴随着源头沼泽的消失,冻结层下水的增加对蒸发增加引起的水资源衰减有所缓减。  相似文献   

19.
Stable isotope mass balance of the Laurentian Great Lakes   总被引:2,自引:0,他引:2  
    We investigate the physical limnology of the Laurentian Great Lakes of North America using a new dataset of 18O/16O and 2H/1H ratios from over 500 water samples collected at multiple depths from 75 stations during spring and summer of 2007. δ18O and δ2H values of each lake plot in distinct clusters along a trend parallel to, but offset from, the Global Meteoric Water Line, reflecting the combined effects of evaporative enrichment and the addition of precipitation and runoff along the chain lake system. We apply our new dataset to a stable-isotope-based evaporation model that explicitly incorporates downwind lake effects, including humidity build-up and changes to the isotope composition of atmospheric vapor. Our evaporation estimates are consistent with previous mass transfer results for Michigan, Huron, Ontario and Erie, but not for Superior, which has a much longer residence time. Calculated evaporation from Superior is ~300 mm per year, less than previous estimates of ~500 mm per year, likely arising from integration of the ‘isotopic memory' of lower evaporation rates under cooler climatic conditions with greater ice-cover than the present. Uncertainties in the estimates from the stable-isotope-based model are comparable to mass transfer results, offering an independent technique for evaluating evaporation fluxes.  相似文献   

20.
The present study investigates the chemical composition of Ma’an Wastewater Treatment Plant in south Jordan. Samples of effluent of this plant were collected over 1 year period. All samples were analyzed for pH, conductivity, major ions (Cl − , , , , , Na + , K + , Ca2 +  and Mg2 + ) and trace metals B, Fe, Cu, Zn, Cd and Pb. The pH value ranges from 6.79 to 8.15 with a median value of 7.39 ± 0.32. The water quality was characterized by its high salinity hazard (C3) and low sodium hazard (S1) which can be considered as marginal for human consumption. Moreover, concentrations of trace metals in treated wastewater were found to be low and within guidelines for irrigation water due to low level of industrialization activities in the study area. Generally, the result of this study suggests that the treated wastewater is suitable for irrigational purposes, while these effluents can be considered as possible additional resources for irrigation in Jordan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号