首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
分析了低硅钢ST30A1(/%:0.06~0.10C,≤0.05Si,0.30~0.45Mn,≤0.015P,≤0.005S,0.025~0.050Al)在LF精炼过程中钢水回磷量、钢水铝含量、精炼渣二元碱度、精炼渣Al_2O_3含量等因素对钢水增硅量的影响,得出转炉下渣量、钢水铝含量、精炼炉渣碱度是影响增硅的主要因素。通过控制转炉下渣、降低原辅料中的硅含量、调整精炼渣中SiO_2、Al_2O_3含量、控制精炼渣二元碱度14,渣中Al_2O_3为27%,控制钢水铝含量0.010%~0.020%,LF钢水增硅量由原0.033%~0.047%降低到0.004%~0.018%,成品钢水硅含量≤0.035%。  相似文献   

2.
李文英  吴志敏 《特殊钢》2013,34(5):38-40
含钛低碳钢(/%:0.05~0.10C、0.70~0.95Si、1.45~1.65Mn、≤0.025P、≤0.025S、0.10~0.20Ti)的生产流程为高炉铁水-35 t LD-LF-150 mm×150 mm连铸工艺。用少量铝脱氧的含钛低碳钢,由于LF精炼渣(/%:55~59CaO、21.9~26.5SiO2、9.4~14.3Al2O3)中Al2O3含量较高,使LF精炼过程中钢水铝含量增加和20 t中间包水口结瘤,影响连铸顺行。在热力学计算的基础上,优化了冶炼工艺,转炉出钢不加铝锰铁,使用低铝硅铁代替普通硅铁,精炼渣不加高铝矾土,优化精炼渣成分(/%:56.1~65.6CaO、19.3~27.2SiO2、5.1~9.1Al2O3),钢水中Al含量由0.007%~0.018%降至0.001%~0.009%,有效减少中间包水口结瘤的发生。连浇炉数由原来的3~6炉提高到9~16炉。  相似文献   

3.
试验研究了组分对碱度3~5的LF精炼渣(/%:37.5~54.8CaO,9.8~18.2SiO2,20~30Al2O3,4~10MgO,3~10CaF2)粘度的影响。结果表明,CaF2和Al2O3对渣粘度影响较大,碱度和MgO对粘度影响较小。随着CaF2含量的增加,渣粘度先降低后增加;随着Al2O3含量的增加,渣粘度逐渐降低。渣中Al2O3含量为20%,CaF2≥6%或渣中Al2O3含量为25%,CaF2≥3%时,1500℃渣的粘度值低于0.5 Pa.s。试验得出粘度较优组分为4~5R,25%~30%Al2O3,6%~10%MgO,3%~6%CaF2。100 t LF精炼TC80钢生产试验表明优化后精炼渣将钢水中的硫由0.020%脱至0.005%以下,脱硫率从优化前的72%提高至84%,LF精炼终点平均T[O]为14×10-6。   相似文献   

4.
钢包顶渣的改质是防止钢水二次氧化、钢液深度脱氧、优化钢液和夹杂物去除的重要工艺方法。120 t转炉+LF +板材生产线生产低碳铝镇静钢SPHC和330CL时,LF精炼采用碳铝改质剂(/%: ≥35Al2O3,15~30C,5~15Al, ≤5SiO2,6 ~12CaF2 )较无碳改质剂 (/%:40~ 60Al2O3, ≥20A1,2~ 10CaO,≤10SiO2)钢水增氮量从0.000,5% ~0.0015% 降至≤0.001%,脱硫率从40%增至45%。  相似文献   

5.
石枚梅 《特殊钢》2014,35(2):24-26
120 t转炉冶炼低碳铝镇静钢SPHC的出钢过程中向底吹氩的钢包中加2.0~2.5 kg/t铝铁(49%Al),并加入2.5~4.0 kg/t LF精炼固态弃渣(/%:6.29~10.33SiO2,19.14~29.51 Al2O3,54.69~59.96CAO,4.97~6.89MgO)以替代钢水净化剂(预熔渣-钢渣改质剂/%:10~18Al2O3,42~55CaO,>3.5Al,2~5MgO,6~10CaF2)的生产结果表明,LF精炼弃渣,化渣迅速,有利于吸附夹杂物,降低T[O],消除水口结瘤,有利于改善环境和降低成本。  相似文献   

6.
研究了硅镇静钢的硅氧反应机理,钢渣界面脱硫机理。通过minitab回归方程分析现有工艺的脱硫能力限制性环节,得出现有工艺主要存在4个突出问题并提出了改善方向:一是精炼渣流动性差,现有渣洗及工艺条件下石灰用量6.1 kg降至5.5~6.0 kg,最终CaO组元由59.55%降至56.27%~58.31%;二是低耐材寿命,利用转炉出钢预熔渣渣洗和LF渣面预脱氧,增加渣中Al2O3组元,取代了萤石,减少钢包炉衬化学侵蚀和机械冲刷,使渣中Al2O3组元含量由4.3%提高至9.9%~11.3%,三是过程碱度低,SiO2组元由22.36%降至18.03%~19.82%,过程碱度不低于2.8;四是应用不稳定,材料因断裂频次5次/批次降至0。通过精炼渣系调整,曼内斯曼指数稳定在0.25~0.30,去除非金属夹杂物能力突出;吨钢降本不低于5元,成本优势显著。  相似文献   

7.
朱万军  区铁  李光强  王春锋  沈继胜 《炼钢》2012,28(2):48-51,64
为减少低碳低硅钢冶炼过程增硅,通过工业试验对武汉钢铁股份有限公司CSP流程精炼过程硅含量控制作了分析。结果发现:钢水增硅主要发生在LF精炼过程,除转炉下渣量和钢水AlS含量外,钙处理工艺也是影响钢水增硅的重要因素。热力学计算也表明:精炼结束时钢水中AlS与渣中SiO2反应未达到平衡,增硅还会继续进行;钢水中钙对渣中SiO2的还原能力远大于AlS;通过调整精炼渣中SiO2含量,可减缓钢水增硅。  相似文献   

8.
通过电弧炉出钢加铝铁、硅铁脱氧,LF精炼初渣的组分为(/%:27.39~37.34 Al2O3,38.42~38.68 CaO,14.20~18.38 SiO2,8.50~10.72 MgO,0.82~0.89 FeO,0.27~0.33 MnO,0.69~0.74 S,0.66~0.75TiO2,(CaO)/(SiO2)=2.09~2.72,(CaO)/(Al2O3)=1.04~1.40),LF终点T[O]为0.0012%~0.0019%,T[N]为0.0043%~0.0050%,[Ti]0.002%和[Ca]0.006%~0.009%。GCr15轴承钢LF精炼终点氧化物夹杂分析结果表明,钢中主要氧化物夹杂为镁铝尖晶石(MgO·Al2O3)和钙镁铝尖晶石氧化物(CaO·MgO·Al2O3)。镁铝尖晶石平均尺寸低于0.5μm,当有MnS、TiN等在其上析出后平均尺寸增大。钙镁铝尖晶石平均尺寸通常在2μm以上,在精炼温度下呈液态,易在钢中聚集长大,其尺寸(1.39~2.12μm)比固态的钙镁铝尖晶石-MnS夹杂物大,且更被精炼渣吸收并上浮去除。随着精炼过程钢液中的硫含量降低,以这两类尖晶石为核心的含MnS的复合夹杂物的平均尺寸降低。适当降低精炼终点渣中MgO的含量、光学碱度和黏度可以减少钢中夹杂物的数量并降低其平均尺寸。  相似文献   

9.
盖一铭  杨健 《炼钢》2023,(3):1-15
对前人开发的低硅钢种控硅脱硫技术的最新进展进行了总结。通过控硅热力学分析,明确了为达到目标Si含量,钢液中Al和Ca的控制目标含量。为防止脱硫过程中回硅,应重点控制转炉下渣量、脱硫LF精炼时间、LF进站铝含量,采用合适的渣系,还应控制钢液中钙含量。由于脱硫要求增加吹氩量以强化钢渣间界面反应,但控硅要求吹氩量不宜过大,所以存在最佳吹氩量。为提高脱硫率,应采用碱度为5.0~8.0的精炼渣,还应控制钢水温度高于1 565℃。  相似文献   

10.
董方  邓浩华  郄俊懋 《特殊钢》2014,35(2):9-12
使用CQKJ-Ⅲ矿渣熔化温度测定仪和MTLQ-RD-1300半球熔点熔速综合测定系统,通过正交实验研究碱度、BaO(6%~14%)、CaF2(0~10%)和Al2O3(18%~28%)对基础精炼渣系CaO-SiO2-Al2O3一MgO-CaF2半球熔点(熔化温度)和熔化速率的影响。结果表明,对高碱度精炼渣熔点的影响因素为CaF2、BaO、Al2O3、碱度(R)依次减弱;对熔速的影响因素为碱度(R)、Al2O3、CaF2、BaO依次减弱,提高精炼渣碱度同时添加适量的Al2O3可以降低精炼渣的熔点和提高熔速,BaO、CaF2的加入也能不同程度的降低精炼渣的熔点,提高精炼渣的熔速;当碱度为4~5,BaO 10%~14%,Al2O3 23%~28%,CaF2 5%~10%时,精炼渣的熔点比较低(约1340℃),熔速比较大(熔化时间<50 s);减小高碱度精炼渣的粒度可以降低熔渣的熔点和提高熔化速率。  相似文献   

11.
杜广巍  郭汉杰 《特殊钢》2016,37(4):18-22
55SiCr钢280 mm×325 mm铸坯(/%:0.55C,1.42Si,0.67Mn,0.008S,0.67Cr)的冶炼流程为80 t BOF-LF-RH-CC工艺。通过BOF出钢加Al和硅铁合金,同时加入精炼渣,控制精炼过程渣碱度R(CaO/SiO2)为2.0左右,RH≥20 min,软吹搅拌≥15 min,控制钢中夹杂物转变,得到洁净弹簧钢55SiCr。分析结果表明,LF精炼过程中夹杂物由早期的Al2O3-SiO2-MnO和Al2O3夹杂将逐渐转变为Al2O3-CaO-SiO2夹杂,RH真空处理后夹杂物全部转变为Al2O3-CaO-SiO2夹杂,LF开始精炼T[O]和[N]分别为36×10-6和26×10-6,铸坯T[O]、[N]分别为7×10-6和43×10-6,铸坯中夹杂物主要为Al2O3-CaO-SiO2和Al2O3,尺寸≤10μm。   相似文献   

12.
研究了连铸38CrMoAl钢(/%:0.35 ~ 0.42C、0.20 ~ 0.45Si、0.30 ~0.60Mn、1.35 ~ 1.65Cr、0.15~0.25Mo、0.70 ~ 1.10Al)夹杂物类型和形成原因.通过优化脱氧制度:提高60 t EAF终点[C] ≥0.010%,保持高碱度渣(R≥2.5),出钢前2 ~3 min向熔池喷吹碳粉,控制(FeO),出钢过程减少Si-Fe加入量;LF喂铝线并用铝粒扩散脱氧,采用(/%)50~60CaO、10 ~ 15SiO2、15 ~ 20Al2O3、≤0.7(FeO+ MnO)、≤5MgO高碱度渣;做好VD后保护浇铸,有效地降低钢中Al2O3类型非金属夹杂物.结果表明,优化工艺后38CrMoAl钢连浇炉数达到9炉,夹杂物废品率≤1%.  相似文献   

13.
研究了140 t LD-LF-RH-CC流程冶炼超低氧钢时精炼过程铝脱氧钢中夹杂物的变化。试验钢出钢过程加足够的铝脱氧,以尽快降低钢液中溶解氧。为使Al2O3转变为钙铝酸盐夹杂,选用CaO-Al2O3精炼渣系,渣中含3.00%~8.42%SiO2。结果表明,精炼时钢液中夹杂物的变化趋势为:纯Al2O3→尖晶石夹杂→CaO-Al2O3-MgO复合夹杂物,炉渣中8.42%SiO2炉次夹杂物转变慢于3.00%SiO2炉次;当炉渣CaO/Al2O3为1.60时,钢中夹杂物大多转变为低熔点CaO-Al2O3-MgO复合夹杂。精炼渣的成分控制应为(%):55~60CaO,35~40Al2O3, 5~10MgO。  相似文献   

14.
针对10B21钢(%:0.19~0.22C,≤0.08Si,0.8~1.0Mn,≤0.020P,≤0.020S,0.010~0.040Al,0.001~0.005B)冶炼过程中钢液硅含量超标、可浇性差、铸坯角裂的问题,通过生产数据和夹杂物分析、铸坯低倍检验得出,LF白渣后,渣中SiO2被Al还原,造成[Si]超标;钢中Al2O3在水口蓄积降低10B21钢的可浇性,凝固过程氮化硼和氧化硼在晶界析出,易使铸坯产生角裂。通过提高转炉终点[C]为0.10%0.14%,出钢温度1640~1660℃,转炉铝铁加入量由1.82 kg/t降至1.36 kg/t,LF精炼铝铁加入量由2.8 kg/t降至1.6 kg,/t,喂钙量由1.23kg/t增至2.05 kg/t,添加微量固氮元素Ti,优化连铸工艺等措施后,钢液中Si含量-[Si]≤0.08%比例从65.62%提高到89.50%;单个中问包连浇炉数从4炉提高到12炉;铸坯角裂得到有效控制,正品铸坯收得率由88.23%提高至97.64%。  相似文献   

15.
GCr15钢的生产流程为120 t BOF-LF-RH-CC工艺。BOF出钢加200 kg铝块进行强脱氧,同时LF过程控制Al含量至0.030%~0.045%,LF结束夹杂物主要为MgO·Al2O3,RH真空后MgO·Al2O3夹杂物被去除,钢水中夹杂物以钙铝酸盐为主,但是连铸浇铸过程MgO·Al2O3夹杂物又会重新生成。因为LF精炼过程Al-MgO和C-MgO反应的存在,高碳铝脱氧GCr15轴承钢LF精炼结束更容易获得MgO·Al2O3夹杂物,并促进中间包钢水MgO·Al2O3夹杂物重新生成。当BOF出钢仅加40 kg铝块进行预脱氧,LF结束钢水MgO·Al2O3夹杂物数量显著降低,同时中间包钢水中MgO·Al2O3夹杂物不再重新生成。此外,将低钛低铝硅铁由出钢过程改为LF过程加入,也可以有效控制钢水中MgO·Al2O3夹杂物数量。   相似文献   

16.
为了研究120 t BOF-LF-RH-160 mm×160 mm坯CC工艺生产的铝脱氧20钢(/%:0.13~0.23C,0.17~0.37Si,0.35~0.65Mn,≤0.035P,≤0.035S,0.020~0.050Al)中非金属夹杂物的控制技术,对LF精炼过程中脱氧剂加入时机进行调整,并对精炼过程中非金属夹杂物类型与夹杂物数量进行分析。结果表明,转炉出钢后采用铝块脱氧,LF精炼进站非金属夹杂物主要为Al2O3,精炼结束前部分夹杂物由Al2O3转变为Al2O3·CaO,RH结束后非金属夹杂物密度3~4个/mm2,铸坯氧含量(7.48~8.18)×10-6;而转炉出钢后采用硅锰进行脱氧,精炼结束前采用铝线,精炼过程中夹杂物主要为MnO·SiO2,CaO含量小于5%,精炼结束非金属夹杂物控制为Al2O3,RH真空处理后,非金属夹杂物密度小于1.5个/mm2,铸坯氧含量(4.94~5.53)×10-6。因此,针对采用“BOF-LFRH-CC”工艺流程生产的含铝钢,提出精炼结束前将非金属夹杂物控制为Al2O3,同时运用RH真空高效去除夹杂物,以提高钢水的洁净度。  相似文献   

17.
吴辉强  顾超  林路  包燕平 《特殊钢》2016,37(1):34-36
SK5 弹簧钢(/% :0. 75 ~0. 84C, ≤0. 35Si, ≤0. 40Mn, ≤0. 035P,≤0.030S)经 100 t EAF-LF-VD-CC 流程生产。通过EAF出钢加硅镒合金和铝铁进行预脱氧,LF精炼过程添加80~150 kg铝镁钙和少量硅锭合金进行复合铝脱氧,精炼渣碱度11.13,(CaO)/(Al2O3) =4. 98等工艺措施,脱氧效果较明显,铸坯中平均全氧含量达到 11 x 10-6项,铸坯中氮含量达到35 x 10-6。冶炼过程夹杂物种类按纯Al2O3>硫化物一'MgO - A12O3 - CaO—MgO •Al2O3 • CaO • SiO2变化,铸坯中夹杂物主要为CaO-A12O3 • SiO2 - MgO系,其塑性化程度可通过调整精炼渣成分、降低精炼渣熔点实现进一步优化。  相似文献   

18.
辛彩萍  岳峰  吴启帆 《特殊钢》2014,35(4):62-65
试验研究了钢厂BOF-LF-CC-高速线材轧制流程LF二元精炼渣60CaO-40SiO2、[O]27×10-6,和三元精炼渣47.5~50.2CaO-41.8~45.7SiO2-5~8 Al2O3、[O]12×10-6~14×10-6 对φ5.5 mm盘条中夹杂物种类、形貌、尺寸和数量的影响以及拉丝合股过程断丝指数的影响。结果表明,[O]较高、采用二元渣系精炼的盘条中夹杂物尺寸一般存7μm以上数量较多,Al2O3含量较高,且集中在盘条表面深度1 mm以内,断丝指数为2.5; [O]较低,采用三元渣系精炼的盘条中夹杂物SiO2含量较高,Al2O3含量较低,大部分夹杂物尺寸为~5μm,盘条表面没有较大尺寸的夹杂物,断丝指数为1.0~1.5,所以F采用含5%Al2O3的三元渣精炼,控制[O]≤15×10-6,降低钢中夹杂物数量和尺寸可显著改善钢帘线的拉拔性能。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号