首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There exists strong interaction between the plasma and channel wall in the Hall thruster,which greatly affects the discharge performance of the thruster.In this paper,a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel.The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel.The influences of segmented electrode placed at the ionization region on electric potential,ion number density,electron temperature,ionization rate,discharge current and specific impulse are discussed.The results show that,when segmented electrode is placed at the ionization region,the axial length of the acceleration region is shortened,the equipotential lines tend to be vertical with wall at the acceleration region,thus radial velocity of ions is reduced along with the wall corrosion.The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region.Furthermore,the electron-wall collision frequency and ionization rate also increase,the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.  相似文献   

2.
Analysis of Numerical Simulation Results of LIPS-200 Lifetime Experiments   总被引:1,自引:0,他引:1  
Accelerator grid structural and electron backstreaming failures are the most important factors affecting the ion thruster's lifetime.During the thruster's operation,Charge Exchange Xenon(CEX) ions are generated from collisions between plasma and neutral atoms.Those CEX ions grid's barrel and wall frequently,which cause the failures of the grid system.In order to validate whether the 20 cm Lanzhou Ion Propulsion System(LIPS-200) satisfies China's communication satellite platform's application requirement for North-South Station Keeping(NSSK),this study analyzed the measured depth of the pit/groove on the accelerator grid's wall and aperture diameter's variation and estimated the operating lifetime of the ion thruster.Different from the previous method,in this paper,the experimental results after the 5500 h of accumulated operation of the LIPS-200 ion thruster are presented firstly.Then,based on these results,theoretical analysis and numerical calculations were firstly performed to predict the on-orbit lifetime of LIPS-200.The results obtained were more accurate to calculate the reliability and analyze the failure modes of the ion thruster.The results indicated that the predicted lifetime of LIPS-200's was about 13218.1 h which could satisfy the required lifetime requirement of 11000 h very well.  相似文献   

3.
The distribution of the thermal effects of the ion thruster plume are essential for estimating the influence of the thruster plume, improving the layout of the spacecraft, and for the thermal shielding of critical sensitive components. In order to obtain the heat flow distribution in the plume of the LIPS-200 xenon ion thruster, an experimental study of the thermal effects of the plume has been conducted in this work, with a total heat flow sensor and a radiant heat flow sensor over an axial distance of 0.5–0.9 m and a thruster angle of 0°–60°. Combined with a Faraday probe and a retarding potential analyzer, the thermal accommodation coefficient of the sensor surface in the plume is available. The results of the experiment show that the xenon ion thruster plume heat flow is mainly concentrated within a range of 15°. The total and radial heat flow of the plume downstream of the thruster gradually decreases along the axial and radial directions, with the corresponding values of 11.78 kW m−2 and 0.3 kW m−2 for the axial 0.5 m position, respectively. At the same position, the radiation heat flow accounts for a very small part of the total heat flow, approximately 3%–5%. The thermal accommodation factor is 0.72–0.99 over the measured region. Furthermore, the PIC and DSMC methods based on the Maxwell thermal accommodation coefficient model (EX-PWS) show a maximum error of 28.6% between simulation and experiment for LIPS-200 ion thruster plume heat flow, which, on the one hand, provides an experimental basis for studying the interaction between the ion thruster and the spacecraft, and on the other hand provides optimization of the ion thruster plume simulation model.  相似文献   

4.
In this paper,the immersed finite element particle-in-cell Monte Carlo collision (IFE-PIC-MCC)model is used to study the cause of the grid erosion in field emission electric propulsion (FEEP).The simulation results show that charge exchange (CEX) ions are the main cause of the grid erosion,while beam ions basically do not impinge on the grid.The CEX ions are mainly generated near the grid.Some of these CEX ions return to the upper surface,lower surface and notch side surface of the grid.The impact angle of CEX ions returning to the upper and side surfaces is large,but their energy is low,while the impact angle of CEX ions returning to the lower surface is small,but their energy is high.The above characteristics lead to the similar erosion rates of these three surfaces.  相似文献   

5.
Non-intrusive characterization of the singly ionized xenon velocity in Hall thruster plume using laser induced fluorescence(LIF) is critical for constructing a complete picture of plume plasma,deeply understanding the ion dynamics in the plume, and providing validation data for numerical simulation. This work presents LIF measurements of singly ionized xenon axial velocity on a grid ranging from 100 to 300 mm in axial direction and from 0 to 50 mm in radial direction for a600 W Hall thruster operating at the nominal condition of discharge voltage 300 V and discharge current 2 A, the influence of discharge voltage is investigated as well. The ion velocity distribution function(IVDF) results in the far-field plume demonstrate a profile of bimodal IVDFs, especially prominent at radial distances greater than channel inner radius of 22 mm at axial position of 100 mm, which is quite different from that of the near-field plume where bimodal IVDFs occur in the central core region for the same power Hall thruster when compared to previous LIF measurements of BHT-600 by Hargus(2010 J. Propulsion Power 26 135).Beyond 100 mm, only single-peak IVDFs are measured. The two-dimensional ion velocity vector field indicates the bimodal axial IVDF is merely a geometry effect for the annular discharge channel in the far-field plume. Results about the IVDF, the most probable velocity and the accelerating potential profile along the centerline all indicate that ions are still accelerating at axial distances greater than 100 mm, and the maximum most probable velocity measured at300 mm downstream of the exit plane is about 19 km s-1. In addition, the most probable velocity of ions along radial direction changes a little except the lower velocity ion populations in the bimodal IVDF cases. The ion temperature at axial distances of 10 and 300 mm oscillates along the radial direction, while the ion temperature first increases, and then decreases for the 200 mm case. Finally, the axial position for the ion peak axial velocity on the thruster centerline is shifted upstream for higher discharge voltages, and the velocity curve is becoming steeper with the discharge voltage before reaching the maximum. This observation can be used as a criterion to optimize the thruster performance.  相似文献   

6.
In order to achieve a better understanding of plume characteristics of LIPS-300 ion thruster, the beam current density, ion energy and electron number density of LIPS-300 ion thruster plume are studied with an Advanced Plasma Diagnostics System(APDS) which allows for simultaneous in situ measurements of various properties characterizing ion thruster, such as plasma density, plasma potential, plasma temperature and ion beam current densities, ion energy distribution and so on. The results show that the beam current density distribution has a double‘wing' shape. The high energy ions were found in small scan angle, while low energy ions were found in greater scan angle. Electron number density has a similar shape with the beam current density distribution.  相似文献   

7.
The intersection point of the characteristic magnetic field line (CMFL) crossing the anode boundary with the discharge channel wall,and its influence on thruster performance and the energy and flux of ions bombarding the channel wall,have been studied numerically.The simulation results demonstrate that with the increase in distance from the crossover point of the CMFL with the channel wall to the bottom of the thruster channel,the ionization rate in the discharge channel gradually increases;meanwhile,the ion energy and ion current density bombarding the channel wall decreases.When the point of the CMFL with the channel wall is at the channel outlet,the thrust,specific impulse,and efficiency are at a maximum,while the ion energy and ion current density bombarding the channel wall are at a minimum.Therefore,to improve the performance and lifetime of the thruster,it is important to control the point of intersection of the CMFL with the channel wall.  相似文献   

8.
The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of a Hall thruster are studied using the particlein-cell method.A two-dimensional physical model is established according to the Hall thruster discharge channel configuration.The effects of electrode length on the potential,ion density,electron temperature,ionization rate and discharge current are investigated.It is found that,with the increasing of the segmented electrode length,the equipotential lines bend towards the channel exit,and approximately parallel to the wall at the channel surface,the radial velocity and radial flow of ions are increased,and the electron temperature is also enhanced.Due to the conductive characteristic of electrodes,the radial electric field and the axial electron conductivity near the wall are enhanced,and the probability of the electron-atom ionization is reduced,which leads to the degradation of the ionization rate in the discharge channel.However,the interaction between electrons and the wall enhances the near wall conductivity,therefore the discharge current grows along with the segmented electrode length,and the performance of the thruster is also affected.  相似文献   

9.
The performance of an iodine radio ion thruster with a 4 cm diameter(IRIT4) was studied experimentally in this paper. Regulation of the mass flow rates of the iodine propellant is achieved by using a temperature control method of the iodine reservoir. Performance of the thruster using iodine as propellants is obtained at different total thruster powers of 40.6–128.8 W,different grid voltages of 1000–1800 V and the iodine flow rate of 100 μgs~(-1). Results show that thrust and specific impulse increase approximately linearly with the increasing total thruster power and the screen grid voltage. The thrust of 2.32 mN and the specific impulse of 2361 s are obtained at the nominal total thruster power of 95.8 W and the screen grid voltage of 1800 V. It is also indicated that performance of the iodine propellant is comparable to that of the xenon propellant; and a difference between them is that the iodine thrust is slightly higher than xenon when the total thruster power is more than 62 W. At the nominal 95.8 W total thruster power, the thrust values of them are 2.32 m N and 2.15 mN respectively, and the thrust-to-power ratios of them are 24.2 mN kW~(-1) and 23.5 mN kW~(-1), respectively.  相似文献   

10.
Beam flatness is an important parameter that determines the performance and the lifetime of a gridded ion thruster.To improve the beam flatness of the 30 cm (LIPS-300) ion thruster,variable aperture ion optics that adapts to the decreasing ion density as the radius increases is proposed.It is the ion optics that the screen grid surface is divided into several zones,where the aperture diameter in each zone is determined by the ion density and the electron temperature upstream of the screen grid.The beam current density in the central area is artificially reduced.A particle in cell-Monte Carlo collision model is applied in this work to investigating the effect of variable aperture on the perveance and the maximum beam current per aperture by simulating the extraction,focusing and acceleration processes of ions.Taking into account the engineering implementability,the screen grid surface is divided into four zones.The hole diameter in each zone is decreased from 1.95 mm to 1.8 mm,1.9 mm,1.8 mm and 1.7 mm,respectively.The simulation results show that the maximum ion density in the center area of grid is decreased by 10.6% and 6.99%,while it is increased by 6.49% and 22.3% in the edge region,respectively.The beam flatness of the variable aperture ion optics is improved from 0.69 to 0.88.The erosion rate is decreased by 31.9%,but the total beam current is also decreased by 7.15%.The simulation results can provide a valuable reference of the development of the ion thruster.  相似文献   

11.
A high-speed charge-coupled device camera was used to capture images of the plume and acceleration channel of a Hall effect thruster during ignition at different discharge voltages. To better understand the influence of changes in the discharge voltage on the plasma parameters during thruster ignition, a particle-in-cell numerical model was used to calculate the distribution characteristics of the ion density and electric potential at different ignition moments under different discharge voltages. The results show that when the discharge voltage is high, the ion densities in the plume and acceleration channel are significantly higher at the initial phase of thruster ignition; with the gradual strengthening of the ignition process, the propellant avalanche ionization during thruster ignition occurs earlier and the pulse current peak increases. The main reason for these phenomena is that the change in the discharge voltage results in different energy acquisitions of the emitted electrons entering the thruster channel.  相似文献   

12.
The grid structure has significant effects on the discharge characteristics of an ion thruster.The discharge performances of a 30 cm diameter ion thruster with flat,convex and concave grids are studied.The analysis results show that the discharge chamber with a convex grid has a larger’magnetic-field free area’ than the others,and the parallelism of the magnetic-field isopotential lines and anode is generally the same in the three models.Plasma densities of the three structures at the grid outle...  相似文献   

13.
结合船用堆的特点,对核电站反应堆正方形燃料组件堆芯仿真软件进行修改和移植,开发可用于研究船用堆非干净六边形燃料组件堆芯中毒碘坑的堆芯仿真软件。应用该软件,对燃耗为30MW•d的某反应堆进行了碘坑仿真,并与点模型仿真结果进行了比较。结果表明:点模型的仿真结果偏小,用本软件进行仿真,平衡氙毒计算值与实测值间的偏差为-0.8%,最大氙毒计算值与实测值间的偏差为-4.3%,碘坑计算值与实测值间的偏差为-0.5%。本软件仿真结果符合实际运行规律和物理规律,因此,本软件可准确模拟碘坑中毒,对提高船用堆机动性和安全运行有重要的理论意义和应用价值。  相似文献   

14.
The electrospray thruster is becoming popular in space propulsion due to its low power and high specific impulse.Before this work,an electrospray thruster based on a porous emitter was developed.In order to achieve larger and more stable thrust,the thruster was redesigned,and the influence of the space between strips on thrust was studied.Four types of emitter were tested,and they had 1,3,4 and 14 emitter-strips on the emission surface of the same size respectively.According to the experimental results,the maximum extraction voltage and emission current of the four thrusters are different under stable operational conditions.The measured stable emission currents and extraction voltages were-500μA/-5000 V,-1570 μA/-3800 V,-1200μA/-3800 V,and-650 μA/-4500 V,respectively.Increasing the number of strips may not result in the emission current increasing,but changing the stable operational range of the emission current per strip and the extraction voltage.The maximum stable operational extraction voltages of 3 and 4 emitter-strips are lower than those of 1 and 14 emitter-strips,but the emission currents are higher than those of 1 and 14 emitter-strips.Time-of-flight mass spectrometry was used to analyze the mass distribution and obtain the performance of the thruster in the case of thrusters with 1 and 3 emitter-strips.Both of their plumes were composed of very small ion cluster (the pure-ion regime),and their thrusts were 80.1 μN,219.2μN with specific impulses of 5774 s,5047 s,respectively.  相似文献   

15.
The secondary electron emission (SEE) and inclined magnetic field are typical features at the channel wall of the Hall thruster acceleration region (AR), and the characteristics of the magnetized sheath have a significant effect on the radial potential distribution, ion radial acceleration and wall erosion. In this work, the magnetohydrodynamics model is used to study the characteristics of the magnetized sheath with SEE in the AR of Hall thruster. The electrons are assumed to obey non-extensive distribution, the ions and secondary electrons are magnetized. Based on the Sagdeev potential, the modified Bohm criterion is derived, and the influences of the non-extensive parameter and magnetic field on the AR sheath structure and parameters are discussed. Results show that, with the decrease of the parameter q, the high-energy electron leads to an increase of the potential drop in the sheath, and the sheath thickness expands accordingly, the kinetic energy rises when ions reach the wall, which can aggravate the wall erosion. Increasing the magnetic field inclination angle in the AR of the Hall thruster, the Lorenz force along the $x$ direction acting as a resistance decelerating ions becomes larger which can reduce the wall erosion, while the strength of magnetic field in the AR has little effect on Bohm criterion and wall potential. The propellant type also has a certain effect on the values of wall potential, secondary electron number density and sheath thickness.  相似文献   

16.
A two-dimensional particle-in-cell plasma model is built in the R–Z plane to investigate the lowfrequency plasma oscillations in the discharge channel of a 5 kW LHT-140 Hall thruster. In addition to the elastic, excitation, and ionization collisions between neutral atoms and electrons,the Coulomb collisions between electrons and electrons and between electrons and ions are analyzed. The sheath characteristic distortion is also corrected. Simulation results indicate the capability of the built model to reproduce the low-frequency oscillation with high accuracy. The oscillations of the discharge current and ion density produced by the model are consistent with the existing conclusions. The model predicts a frequency that is consistent with that calculated by the zero-dimensional theoretical model.  相似文献   

17.
周波  严睿  邹杨 《核动力工程》2018,39(5):15-20
基于Mathematica7.0为熔盐堆(MSR)主回路系统建立了一套含流动项及在线去除功能的氙(135Xe)的动态分布数值分析程序,针对2?MW MSR的一种设计方案,分析了不同流量、不同启停堆功率、不同在线去除效率情况下135Xe浓度随时间的动态变化特性。结果表明:相较于静态燃耗模型,流动燃耗模型的135Xe带来的负反应性要低约32.2%;额定流量下主回路系统135Xe浓度分布均匀,只有当主回路系统体积流量小于2.24 cm3·s-1时,流动效应才会对主回路系统内135Xe浓度分布有显著影响;当鼓泡系统的在线去除份额约为0.1%时可以使堆芯135Xe带来的负反应性降低至-38.3 pcm?(1 pcm =10-5),其总的去除效率可以达到86.0%;不同功率水平瞬时停堆工况下,堆芯135Xe浓度单调下降,停堆约50 h后135Xe基本消失,相当于引入+254 pcm反应性,停堆过程无碘坑出现,停堆后再启堆过程不必担心碘坑启动的问题。135Xe去除效率对整个系统135Xe总量有一定影响,在去除份额从0.0001%~20%的变化范围内,135Xe的总活度与静态燃耗模型相比相应增加了0.67%~8.75%。   相似文献   

18.
The multi-cusped field thruster is a unique electric thruster device, which has many advantages such as long lifetime, large-range thrust throttling ability, high thrust density, and low mass. The thruster employs several alternating polarity permanent magnets to create a periodic magnetic field with several cusps. Previous studies have indicated that the basic ionization and acceleration processes are directly related to the electron motion behavior, which mainly depends on the magnetic field characteristics. The magnet number and magnet stage length are two key magnetic field parameters that have important effects on the thruster performances. In this paper, both the magnet number and magnet stage length parameters are studied for the optimization of a 5 k W multi-cusped field thruster. The results indicate that the three-stage thruster has a better electron confinement than the two-stage thruster. It has lower ion energy loss at the wall, and shows a higher ionization rate. Therefore, the three-stage magnetic field is a superior magnetic field configuration. Besides, the three-stage magnetic field simulation results indicate that an optimal accelerating electric field distribution and ionization region distribution could be obtained when the magnet length ratio is 78:25:20.  相似文献   

19.
Gasdynamic flow features in an electrothermal arcjet thruster with a mixture of 1:2 nitrogen/ hydrogen as the working gas have been studied by a two-temperature numerical simulation.Seven species and 17 kinetic processes are included in the chemical kinetic model used to represent dissociation,ionization,and the corresponding recombination reactions in this nitrogen/hydrogen mixture system.Based on the gas flow characteristics inside the arcjet nozzle,a new method is introduced to define the edge of the cold boundary layer,which is more convenient to analyze the evolution and development of plasma flow in an arcjet thruster.The results show that the arcjet thruster performance is determined largely by the exchange of energy and momentum between the low-density,high-temperature arc region and the high-density,coolttow region near the nozzle wall.A significant thermal nonequilibrium is found in the cold boundary layer in the expansion portion of the nozzle.The important chemical kinetic processes determining the distribution of hydrogen and nitrogen species in different flow regions are presented.It has been shown that the reaction rate of hydrogen species ionization impacted by electrons is much higher than that of nitrogen species ionization in the center of the constrictor of the arcjet thruster.This indicates that hydrogen species is very important in the conversion of applied electric energy into thermal energy in the constrictor region of the arcjet thruster.  相似文献   

20.
After current zero,which is the moment when the vacuum circuit breaker interrupts a vacuum arc,sheath development is the first process in the dielectric recovery process.An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted.Therefore,it is very important to study the influence of different AMF amplitudes on the sheath development.The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective.Thus,the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model.We compared the simulation results with the experimental results and then validated the simulation.We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes.The results showed that the larger the AMF amplitudes are,the faster the sheath develops and the lower the ion energy density is,meaning the breakdown is correspondingly more difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号