首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
基于对抗样本的攻击方法是机器学习算法普遍面临的安全挑战之一。以机器学习的安全性问题为出发点,介绍了当前机器学习面临的隐私攻击、完整性攻击等安全问题,归纳了目前常见对抗样本生成方法的发展过程及各自的特点,总结了目前已有的针对对抗样本攻击的防御技术,最后对提高机器学习算法鲁棒性的方法作了进一步的展望。  相似文献   

2.
余正飞  闫巧  周鋆 《自动化学报》2022,48(7):1625-1649
机器学习以强大的自适应性和自学习能力成为网络空间防御的研究热点和重要方向. 然而机器学习模型在网络空间环境下存在受到对抗攻击的潜在风险, 可能成为防御体系中最为薄弱的环节, 从而危害整个系统的安全. 为此科学分析安全问题场景, 从运行机理上探索算法可行性和安全性, 对运用机器学习模型构建网络空间防御系统大有裨益. 全面综述对抗机器学习这一跨学科研究领域在网络空间防御中取得的成果及以后的发展方向. 首先, 介绍了网络空间防御和对抗机器学习等背景知识; 其次, 针对机器学习在网络空间防御中可能遭受的攻击, 引入机器学习敌手模型概念, 目的是科学评估其在特定威胁场景下的安全属性; 然后, 针对网络空间防御的机器学习算法, 分别论述了在测试阶段发动规避攻击、在训练阶段发动投毒攻击、在机器学习全阶段发动隐私窃取的方法, 进而研究如何在网络空间对抗环境下, 强化机器学习模型的防御方法; 最后, 展望了网络空间防御中对抗机器学习研究的未来方向和有关挑战.  相似文献   

3.
机器学习被广泛应用于各个领域, 已成为推动各行业革命的强大动力, 极大促进了人工智能的繁荣与发展。同时, 机器学习模型的训练和预测均需要大量数据, 而这些数据可能包含隐私信息, 导致其隐私安全面临严峻挑战。成员推理攻击主要通过推测一个数据样本是否被用于训练目标模型来破坏数据隐私, 其不仅可以破坏多种机器学习模型(如, 分类模型和生成模型)的数据隐私, 而且其隐私泄露也渗透到图像分类、语音识别、自然语言处理、计算机视觉等领域, 这对机器学习的长远发展产生了极大的安全威胁。因此, 为了提高机器学习模型对成员推理攻击的安全性, 本文从机器学习隐私安全攻防角度, 全面系统性分析和总结了成员推理攻击和防御的基本原理和特点。首先, 介绍了成员推理攻击的定义、威胁模型, 并从攻击原理、攻击场景、背景知识、攻击的目标模型、攻击领域、攻击数据集大小六个方面对成员推理攻击进行分类, 比较不同攻击的优缺点; 然后, 从目标模型的训练数据、模型类型以及模型的过拟合程度三个角度分析成员推理攻击存在原因, 并从差分隐私、正则化、数据增强、模型堆叠、早停、信任分数掩蔽和知识蒸馏七个层面对比分析不同防御措施; 接着, 归纳总结了成员推理攻击和防御常用的评估指标和数据集, 以及其在其他方面的应用。最后, 通过对比分析已有成员推理攻击和防御的优缺点, 对其面临的挑战和未来研究方向进行了展望。  相似文献   

4.
机器学习已经成为当前计算机领域研究和应用最广泛的技术之一,在图像处理、自然语言处理、网络安全等领域被广泛应用。然而,一些机器学习算法和训练数据本身还面临着诸多安全威胁,进而影响到基于机器学习的面部检测、恶意程序检测、自动驾驶汽车等实际应用系统的安全性。由目前已知的针对支持向量机(support vector machine,SVM)分类器、聚类、深度神经网络(deep neural networks,DNN)等多种机器学习算法的安全威胁为出发点,介绍了在机器学习的训练阶段和测试/推理阶段中出现的基于对抗样本的投毒、逃逸、模仿、逆向等攻击和隐私泄露等问题,归纳了针对机器学习的敌手模型及其安全评估机制,总结了训练过程和测试过程中的若干防御技术和隐私保护技术,最后展望了下一步机器学习安全研究的发展趋势。  相似文献   

5.
近年来,基于机器学习的数据分析和数据发布技术成为热点研究方向。与传统数据分析技术相比,机器学习的优点是能够精准分析大数据的结构与模式。但是,基于机器学习的数据分析技术的隐私安全问题日益突出,机器学习模型泄漏用户训练集中的隐私信息的事件频频发生,比如成员推断攻击泄漏机器学习中训练的存在与否,成员属性攻击泄漏机器学习模型训练集的隐私属性信息。差分隐私作为传统数据隐私保护的常用技术,正在试图融入机器学习以保护用户隐私安全。然而,对隐私安全、机器学习以及机器学习攻击三种技术的交叉研究较为少见。本文做了以下几个方面的研究:第一,调研分析差分隐私技术的发展历程,包括常见类型的定义、性质以及实现机制等,并举例说明差分隐私的多个实现机制的应用场景。初次之外,还详细讨论了最新的Rényi差分隐私定义和Moment Accountant差分隐私的累加技术。其二,本文详细总结了机器学习领域常见隐私威胁模型定义、隐私安全攻击实例方式以及差分隐私技术对各种隐私安全攻击的抵抗效果。其三,以机器学习较为常见的鉴别模型和生成模型为例,阐述了差分隐私技术如何应用于保护机器学习模型的技术,包括差分隐私的随机梯度扰动(DP-SGD)技术和差分隐私的知识转移(PATE)技术。最后,本文讨论了面向机器学习的差分隐私机制的若干研究方向及问题。  相似文献   

6.
随着机器学习的不断发展,特别是在深度学习领域,人工智能已经融入到人们日常生活的方方面面。机器学习模型被部署到多种场景的应用中,提升了传统应用的智能化水平。然而,近年来的研究指出,用于训练机器学习模型的个人数据时常面临隐私泄露的风险。其中,成员推理攻击就是针对机器学习模型威胁用户隐私安全的一种非常重要的攻击方式。成员推理攻击的目的是判断用户数据样本是否被用于训练目标模型(如在医疗、金融等领域的用户数据),从而直接干涉到用户隐私信息。首先介绍了成员推理攻击的相关背景知识,随后对现有的成员推理攻击按照攻击者是否拥有影子模型进行分类,并对成员推理攻击在不同领域的威胁进行了相应的总结。其次,介绍了应对成员推理攻击的防御手段,对现有的防御机制按照模型过拟合、基于模型压缩和基于扰动等策略进行分类和总结。最后,对现有的成员推理攻击和防御机制的优缺点进行了分析,并提出了成员推理攻击的一些潜在的研究方向。  相似文献   

7.
机器学习被广泛应用于自动推理、自然语言处理、模式识别、计算机视觉、智能机器人等人工智能领域,成为许多领域研究与技术应用中必不可少的一个工具。然而,机器学习本身存在隐私安全问题,已经引起了越来越多的关注。本文专门针对机器学习中的隐私问题进行了分类和较为详细的介绍,提出了基于攻击对象的隐私威胁分类方式,并清晰地展示了防御技术的研究思路,最后给出了亟待解决的问题和发展方向。  相似文献   

8.
机器学习的应用遍及人工智能的各个领域,但因存储和传输安全问题以及机器学习算法本身的缺陷,机器学习面临多种面向安全和隐私的攻击.基于攻击发生的位置和时序对机器学习中的安全和隐私攻击进行分类,分析和总结了数据投毒攻击、对抗样本攻击、数据窃取攻击和询问攻击等产生的原因和攻击方法,并介绍和分析了现有的安全防御机制.最后,展望了...  相似文献   

9.
联邦学习(federated learning,FL)在多个参与方不直接进行数据传输的前提下共同完成模型训练,充分发挥各方数据价值;然而,由于联邦学习的固有缺陷以及存储和通信的安全问题,其在实际应用场景中仍面临多种安全与隐私威胁。首先阐述了FL面临的安全攻击和隐私攻击;然后针对这两类典型攻击分别总结了最新的安全防御机制和隐私保护手段,包括投毒攻击防御、后门攻击防御、搭便车攻击防御、女巫攻击防御以及基于安全计算与差分隐私的防御手段。通过对联邦学习的现有风险和相应防御手段的系统梳理,展望了联邦学习未来的研究挑战与发展方向。  相似文献   

10.
不同于集中式深度学习模式,分布式深度学习摆脱了模型训练过程中数据必须中心化的限制,实现了数据的本地操作,允许各方参与者在不交换数据的情况下进行协作,显著降低了用户隐私泄露风险,从技术层面可以打破数据孤岛,显著提升深度学习的效果,能够广泛应用于智慧医疗、智慧金融、智慧零售和智慧交通等领域.但生成对抗式网络攻击、成员推理攻击和后门攻击等典型攻击揭露了分布式深度学习依然存在严重隐私漏洞和安全威胁.首先对比分析了联合学习、联邦学习和分割学习3种主流的分布式深度学习模式特征及其存在的核心问题.其次,从隐私攻击角度,全面阐述了分布式深度学习所面临的各类隐私攻击,并归纳和分析了现有隐私攻击防御手段.同时,从安全攻击角度,深入剖析了数据投毒攻击、对抗样本攻击和后门攻击3种安全攻击方法的攻击过程和内在安全威胁,并从敌手能力、防御原理和防御效果等方面对现有安全攻击防御技术进行了度量.最后,从隐私与安全攻击角度,对分布式深度学习未来的研究方向进行了讨论和展望.  相似文献   

11.
大数据时代丰富的信息来源促进了机器学习技术的蓬勃发展,然而机器学习模型的训练集在数据采集、模型训练等各个环节中存在的隐私泄露风险,为人工智能环境下的数据管理提出了重大挑战.传统数据管理中的隐私保护方法无法满足机器学习中多个环节、多种场景下的隐私保护要求.分析并展望了机器学习技术中隐私攻击与防御的研究进展和趋势.首先介绍了机器学习中隐私泄露的场景和隐私攻击的敌手模型,并根据攻击者策略分类梳理了机器学习中隐私攻击的最新研究;介绍了当前机器学习隐私保护的主流基础技术,进一步分析了各技术在保护机器学习训练集隐私时面临的关键问题,重点分类总结了5种防御策略以及具体防御机制;最后展望了机器学习技术中隐私防御机制的未来方向和挑战.  相似文献   

12.
丛悦  仇晶  孙彦斌  苏申  刘园  田志宏 《智能安全》2023,2(2):103-112
人工智能为公共和国防安全的发展和应用提供了巨大的机遇,然而国防安全数据包含了敏感的军事、情报和战略信息,一旦泄露或被滥用,可能对国家安全造成严重威胁,如何确保国防安全数据的隐私保护成为一项重要挑战。个性化联邦学习是近年来发展起来的一种新型的机器学习方法,它旨在通过将分布式的数据在本地进行训练和更新,从而实现在保护数据隐私的前提下提高本地模型的准确性和鲁棒性。与传统的中心化机器学习方法不同,个性化联邦学习允许不同数据拥有者之间共享模型的信息,而不是数据本身。这种方法已经在医疗、金融、物联网等领域得到了广泛的应用。本文从全局模型个性化和本地模型个性化两个方面分别介绍了个性化联邦学习的基本原理以及研究现状,总结了各个方法的优缺点,并讨论了现有方法的评价指标和常用数据集,最后展望了它在未来的发展前景。  相似文献   

13.
在大数据时代下,深度学习、强化学习以及分布式学习等理论和技术取得的突破性进展,为机器学习提供了数据和算法层面的强有力支撑,同时促进了机器学习的规模化和产业化发展.然而,尽管机器学习模型在现实应用中有着出色的表现,但其本身仍然面临着诸多的安全威胁.机器学习在数据层、模型层以及应用层面临的安全和隐私威胁呈现出多样性、隐蔽性和动态演化的特点.机器学习的安全和隐私问题吸引了学术界和工业界的广泛关注,一大批学者分别从攻击和防御的角度对模型的安全和隐私问题进行了深入的研究,并且提出了一系列的攻防方法.在本综述中,我们回顾了机器学习的安全和隐私问题,并对现有的研究工作进行了系统的总结和科学的归纳,同时明确了当前研究的优势和不足.最后,我们探讨了机器学习模型安全与隐私保护研究当前所面临的挑战以及未来潜在的研究方向,旨在为后续学者进一步推动机器学习模型安全与隐私保护研究的发展和应用提供指导.  相似文献   

14.
深度学习是当前机器学习和人工智能兴起的核心。随着深度学习在自动驾驶、门禁安检、人脸支付等严苛的安全领域中广泛应用,深度学习模型的安全问题逐渐成为新的研究热点。深度模型的攻击根据攻击阶段可分为中毒攻击和对抗攻击,其区别在于前者的攻击发生在训练阶段,后者的攻击发生在测试阶段。本文首次综述了深度学习中的中毒攻击方法,回顾深度学习中的中毒攻击,分析了此类攻击存在的可能性,并研究了现有的针对这些攻击的防御措施。最后,对未来中毒攻击的研究发展方向进行了探讨。  相似文献   

15.

In this paper, we explore the adaption of techniques previously used in the domains of adversarial machine learning and differential privacy to mitigate the ML-powered analysis of streaming traffic. Our findings are twofold. First, constructing adversarial samples effectively confounds an adversary with a predetermined classifier but is less effective when the adversary can adapt to the defense by using alternative classifiers or training the classifier with adversarial samples. Second, differential-privacy guarantees are very effective against such statistical-inference-based traffic analysis, while remaining agnostic to the machine learning classifiers used by the adversary. We propose three mechanisms for enforcing differential privacy for encrypted streaming traffic and evaluate their security and utility. Our empirical implementation and evaluation suggest that the proposed statistical privacy approaches are promising solutions in the underlying scenarios

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号