首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用固相合成方法制备Al_2O_3亚微米颗粒增强AZ31镁基复合材料,利用OM、SEM、TEM对Al_2O_3/AZ31镁基复合材料进行组织观察,利用维氏硬度仪、电子万能拉伸试验机对Al_2O_3/AZ31镁基复合材料进行力学性能测试。结果表明:经过固相合成后,Al_2O_3亚微米颗粒均匀的分布在AZ31基体中,通过对基体位错运动的钉扎作用,使该区域的位错密度增加,促进动态再结晶形核,复合材料的晶粒被显著细化。Al_2O_3/AZ31复合材料的力学性能随着Al_2O_3亚微米颗粒含量的增加而提高,当Al_2O_3颗粒含量为2%时,复合材料的力学性能达到最大值,其硬度、抗拉强度、屈服强度和伸长率分别为83HV、302 MPa、203 MPa和8.15%。  相似文献   

2.
以细雾化铝粉和TiB_2颗粒为原料,通过粉末冶金和热轧制制备微米TiB_2和纳米Al_2O_3颗粒增强铝基复合材料。室温时,由于TiB_2和Al_2O_3的综合强化作用,Al_2O_3/TiB_2/Al复合材料的屈服强度和抗拉强度分别为258.7 MPa和279.3 MPa,测试温度升至350℃时,TiB_2颗粒的增强效果显著减弱,原位纳米Al_2O_3颗粒与位错的交互作用使得复合材料的屈服强度和抗拉强度达到98.2MPa和122.5 MPa。经350℃退火1000 h后,由于纳米Al_2O_3对晶界的钉扎作用抑制晶粒长大,强度和硬度未发生显著的降低。  相似文献   

3.
采用热挤压法制备了双尺寸Al_2O_3颗粒增强AZ31镁基复合材料,利用光学显微镜(OM)、扫描电镜(SEM)、维氏硬度仪和电子万能拉伸试验机等研究了Al_2O_3/AZ31镁基复合材料的组织和力学性能。结果表明:经过热挤压后,双尺寸Al_2O_3颗粒均匀地分布在AZ31基体中,通过纳米颗粒对基体位错运动的钉扎作用和微米颗粒对晶粒长大的抑制作用,使复合材料的晶粒被显著细化。相比于单一尺寸,当添加双尺寸Al_2O_3颗粒时,复合材料的力学性能达到最大值,其硬度、抗拉强度和伸长率分别为85 HV、295 MPa和6.8%。  相似文献   

4.
制备了含稀土Ce的Al_2O_3颗粒增强铝基复合材料,利用Gleeble-1500热模拟试验机,在不同变形温度、变形速率下进行压缩试验,研究了稀土对Al_2O_3颗粒增强铝基复合材料热变形行为的影响.结果表明,稀土元素Ce对Al_2O_3颗粒增强铝基复合材料具有明显的强化作用,而且稀土元素能抑制该复合材料的动态再结晶.  相似文献   

5.
通过转喷微注法制备Al_2O_3/7075复合材料,自行设计了转喷微注装置,利用氩气流将增强体颗粒注入熔融金属液,解决了增强体颗粒不易进入金属内部的问题。试验选用不同含量(质量分数分别为0、2%、4%和6%)的亚微米Al_2O_(3p)作为增强相制备Al_2O_3/7075复合材料,并对其组织性能进行观察与测试。结果表明,这种工艺制备成的Al_2O_3/7075复合材料的晶粒组织较不含Al_2O_3的基体合金小,当Al_2O_3的质量分数为4%时,Al_2O_3/7075复合材料的拉伸强度达到最高值182 MPa,较基体铝合金的拉伸强度提高了20%,硬度从HB76提升到HB113,提高了48%;如果进一步增加增强相含量,则复合材料拉伸性能开始出现下降的趋势。  相似文献   

6.
采用机械合金化和粉末冶金法制备了Al_2O_3颗粒增强铜基复合材料,通过失重法对所制得的复合材料分别在不同的酸腐蚀条件下的腐蚀速率进行了测试,并采用扫描电镜对试样的腐蚀表面进行了观察。结果表明,Al_2O_3/Cu复合材料的腐蚀速率随温度和腐蚀介质浓度的增加而显著增大,充分细化Al_2O_3颗粒和适当延长球磨时间有利于改善其耐蚀性能。  相似文献   

7.
《铸造》2016,(2)
以废铝和铸造粉尘为原料,先通过预处理制成铝粉和石英粉,采用粉末冶金方法原位反应制出Al_2O_3/Al-Si基复合材料,并研究了它的组织和性能。结果表明:随着复合材料中自生Al_2O_3的增多,抗拉强度和伸长率下降,复合材料沿晶断裂趋于明显;硬度升高,基体中分布的Al_2O_3颗粒增强效果明显;耐磨性升高,磨损表面呈铝基体+增强相+孔隙的耐磨组织。  相似文献   

8.
通过TEM和微观组织观察等技术,研究Cu基Al_2O_3增强复合材料在不同拉拔压下量下拔变形过程的显微组织和硬度的演变规律。研究结果表明:铜基体中弥散分布着含量众多的纳米级球形Al_2O_3颗粒,其尺寸在30~50nm之间;随着拉拔压下量的增加,晶粒中位错缠结,均匀度提高;与拉拔方向一致的晶粒尺寸明显被拉长,复合材料晶粒长宽比呈现出明显增大的变化规律。复合材料硬度随拉拔压下量增大而上升;在拉拔压下量低于80%时,硬度表现出抛物线形的变化规律;在压下量达到90%以上时,试样硬度的上升幅度明显增加;压下量为95%时硬度达到最大199 HV。  相似文献   

9.
《铸造》2017,(5)
通过高应力三体磨料磨损试验,对比研究Al_2O_3陶瓷增强高锰钢基复合材料和高锰钢的耐磨性能,采用SEM观察磨损试样的微观磨损形貌,并通过测试磨损试样亚表层显微硬度研究材料磨损硬化程度。研究结果表明,本试验条件下Al_2O_3颗粒增强高锰钢基复合材料中陶瓷颗粒与高锰钢基体没有成分过渡,界面处无明显裂缝,说明试样中虽然没有形成冶金结合,但是机械咬合紧密。高应力三体磨料磨损试验中,在3 kg和5 kg两种不同载荷下,Al_2O_3颗粒增强高锰钢基复合材料耐磨性优于高锰钢的耐磨性,而且随着磨损时间的延长,复合材料的相对耐磨性不断提高。在3 kg载荷120 min磨损条件下复合材料的相对耐磨性是高锰钢的1.39倍,在5 kg载荷120 min磨损条件下复合材料的相对耐磨性是高锰钢的1.27倍,可见较低载荷下Al_2O_3颗粒增强高锰钢基复合材料相对耐磨性较高。亚表层显微硬度测试表明,高锰钢和Al_2O_3颗粒增强高锰钢基复合材料在相同磨损时间下,5 kg载荷下的磨损硬化效果高于3 kg载荷下的磨损硬化效果。同时,纯高锰钢的磨损硬化硬度值最高可达到HV 580,而复合材料在较高载荷下由于陶瓷颗粒的保护,其高锰钢基体磨损硬化效果没有纯高锰钢明显。  相似文献   

10.
采用不同Al含量(0.20%、0.35%和0.50%,质量分数)的Cu-Al合金薄板内氧化法制备Cu-Al_2O_3薄板复合材料。对比分析了相同内氧化温度和时间下,不同Al含量的Cu-Al合金薄板内氧化制备出的Cu-Al_2O_3薄板复合材料的组织性能。并尝试采用Cu-Al_2O_3薄板复合材料重熔法制备Al_2O_3颗粒弥散分布的Cu-Al_2O_3块体复合材料。结果表明,Cu-Al_2O_3薄板复合材料内氧化层外部晶粒比内部晶粒细小;随着Al质量分数的增加,在相同的内氧化时间下,内氧化层的深度逐渐减小,内氧化层的内部晶粒逐渐粗化;内氧化后所得复合材料的Cu基体中弥散分布着大量的γ-Al_2O_3,γ-Al_2O_3粒径为10~30 nm,粒子间距为20~70 nm;复合材料中的γ-Al_2O_3强化了Cu基体,与合金相比复合材料表面硬度显著增加,从复合材料表面到内部硬度逐渐减小;Cu-Al_2O_3薄板复合材料重熔后Al_2O_3颗粒团聚且上浮;薄板复合材料重熔法制备Al_2O_3颗粒弥散分布的Cu-Al_2O_3块体复合材料不可行。  相似文献   

11.
采用粉末冶金法制备Al_2O_3/Cu和Cr30/Cu复合材料,采用熔渗法制备W80/Cu(-Al_2O_3)复合材料,观察其微观组织,测试其真空电击穿性能。结果表明:Al_2O_3/Cu和Cr30/Cu复合材料有较低的截流值,Cr30/Cu复合材料有较高的耐电压强度,且燃弧时间更加稳定;在W80/Cu复合材料中引入Al_2O_3强化粒子能提高其耐电压强度,降低截流值;Al_2O_3/Cu和Cr30/Cu复合材料电弧烧蚀区域均匀分散,而W/Cu复合材料电弧侵蚀集中,侵蚀坑较深,但能减弱熔融金属喷溅;Cr30/Cu复合材料抗真空电击穿性能最优。  相似文献   

12.
采用机械合金化与放电等离子烧结的方法制备了不同Al_2O_3体积分数的Cu-Al_2O_3复合材料。研究了Al_2O_3颗粒含量对Cu-Al_2O_3复合材料组织与性能的影响,特别是对导电性能的影响,比较了孔隙、第二相颗粒等不同因素对导电性能的影响。结果表明:随着Al_2O_3体积分数的增加,复合材料颗粒发生团聚,孔隙数量逐渐增多,材料的致密化程度不断下降;基体中弥散分布的Al_2O_3纳米颗粒可以显著提升复合材料的抗拉强度,抗拉强度最大达到596 MPa,伸长率最大可达3.65%。但Al_2O_3纳米颗粒的加入会导致复合材料导电率的下降,球磨过程中引入的杂质铁对复合材料导电性能影响最大,其次是纳米晶晶界、纳米Al_2O_3颗粒和孔隙,位错对导电性能的影响最小。  相似文献   

13.
采用粉末冶金法制备了不同体积分数的纳米MgO颗粒增强铜基复合材料,测定了MgO/Cu复合材料的密度、硬度和电导率,并进行了微观组织观察。结果表明,随着MgO颗粒含量的增加,MgO/Cu复合材料的密度和电导率降低,硬度先升高后降低,当MgO体积分数达到2.5%时,综合性能最好。微观组织观察表明,热挤压后,增强相颗粒弥散分布在铜基体上;随着增强相体积分数的增加,颗粒出现团聚并聚集在铜基体晶界处。  相似文献   

14.
指出了Al_2O_3/Cu弥散强化复合材料制备过程中需要注意的问题:颗粒尺寸、界面和工艺;综述了制备Al_2O_3/Cu复合材料的传统方法 ,介绍了搅拌铸造法、机械合金化法、内氧化法和共沉淀法的工艺过程和工艺特点;对改进的制备方法,如反应球磨、化学镀、添加合金元素和稀土元素做出论述。最后指出今后Al_2O_3/Cu复合材料需关注的问题和研究方向。  相似文献   

15.
采用原位法和半固态搅拌铸造法制备了体积分数为1%,尺寸分别为1μm、500 nm和100 nm的Al_2O_3颗粒和4wt%Mg_2Si颗粒增强铝基复合材料,利用金相显微镜、扫描电镜、X射线衍射仪和能谱仪对材料显微组织、相组成和元素组成进行分析,并对其拉伸性能进行测试。结果表明:Al_2O_3颗粒的加入使该复合材料基体组织得到细化,并且Al_2O_3颗粒尺寸越小组织越细。添加Al_2O_3颗粒使复合材料抗拉强度提高,随着Al_2O_3颗粒尺寸的减小,复合材料抗拉强度升高,而伸长率降低。Mg_2Sip/Al复合材料和(Al2O3(1μm)+Mg2Si)p/Al复合材料的断裂方式主要是韧脆混合型断裂,(Al_2O_3(500 nm)+Mg_2Si)p/Al复合材料和(Al_2O_3(100 nm)+Mg_2Si)p/Al复合材料断裂方式主要为韧性断裂。  相似文献   

16.
粉末冶金法制备纳米颗粒增强Cu基复合材料   总被引:1,自引:0,他引:1  
采用粉末冶金方法,以SiC、SiO2、Al2O3和AlN等纳米颗粒为增强相,制备出Cu/SiC、Cu/SiO2、Cu/Al2O3和Cu/AlN等铜基纳米复合材料;研究了各增强相的含量对复合材料的显微组织和性能的影响,比较了不同纳米颗粒对铜基复合材料的增强效果.结果表明,Cu基纳米复合材料随增强相质量分数的增加,密度降低,电阻率略有升高,强度和硬度先升高后降低;退火温度曲线表明,复合材料的软化温度都达到700℃以上,远高于纯铜的软化温度(150℃),大大提高了材料的热稳定性;通过比较得知,在质量分数相同时,所采用的各增强相纳米颗粒对铜基体的增强效果相近.  相似文献   

17.
Al_2O_3颗粒对LiTaO_3压电陶瓷增强增韧机制的探讨   总被引:1,自引:1,他引:0  
采用氮气保护热压烧结工艺制备Al_2O_3/LiTaO_3(简称ALT)陶瓷基复合材料,研究了Al_2O_3颗粒对LiTaO_3压电陶瓷增强增韧的机制.结果表明,ALT陶瓷复合材料的相对密度比烧结纯LiTaO_3陶瓷的高得多,且其各项力学性能均有明显的提高;Al_2O_3的加入起到烧结助剂的作用;Al_2O_3第二相加入后对LiTaO_3压电陶瓷起到弥散强化作用,其增韧机理为ALT复合材料中残余应力场和裂纹偏转增韧.  相似文献   

18.
《铸造》2017,(1)
使用挤压法制备不同含量的微米(5μm)及纳米(30 nm)Al_2O_3颗粒增强铝基复合材料,采用SEM和EDS对其微观组织进行观察和分析,并对其力学性能进行检测。结果表明:单加微米颗粒时,颗粒分布较为均匀;同时加入纳米颗粒时,组织中出现团聚现象。从其力学性能方面看,不同粒径的颗粒作为增强剂比单一粒径颗粒增强的铝基复合材料拉伸性能好。单一Al_2O_3(5μm)增强颗粒在10 wt%时拉伸性能为161 MPa达到最佳,而混合颗粒最佳组合为10 wt%Al_2O_3(5μm)+4wt%Al_2O_3(30 nm),其拉伸性能达到(174 MPa),较单一颗粒增加8.1%。混合颗粒的添加在改善复合材料的力学性能方面起到一定的作用。  相似文献   

19.
通过对Al-TiO_2-SiO_2体系混合粉末固-液原位合成制备出了(Al_2O_3+Al_3Ti)_P/Al复合材料.利用X射线衍射仪、扫描电镜等方法观察分析了其物相和显微组织形貌.结果表明:原位反应制备的(Al_2O_3+Al_3Ti)_P/Al复合材料,金属间化合物增强相Al_3Ti均匀分布于基体,陶瓷相Al_2O_3颗粒非常细小,弥散分布于基体中,使材料的硬度等性能得到提高.  相似文献   

20.
采用机械合金化的方法,以Cu和Ti_2AlC粉作为原料,制备了Cu包覆Ti_2AlC复合颗粒。研究了Cu、Ti_2AlC体积比和球磨时间对包覆效果的影响,并将包覆颗粒与Al粉混合后采取干压成型、无压气氛保护烧结的方法制备了Cu包覆Ti_2AlC增强铝基复合材料。实验结果表明,Cu体积含量为30%,球磨时间为10 h时,能制备出包覆效果良好的复合颗粒;球磨的高能量使Cu和Ti_2AlC在垂直于Ti_2AlC c轴方向发生机械合金化,从而使得Cu的包覆较为牢固;Cu包覆Ti_2AlC增强铝基复合材料的烧结产物主要为Ti_3AlC2、Al、Al_2Cu、Al_3Ti和Al_2O_3,其复合材料较为致密,增强颗粒分布较为弥散。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号