首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mean Flow and Turbulence Structure in Vertical Slot Fishways   总被引:1,自引:0,他引:1  
This paper presents the results of an experimental study on the mean and turbulence structures of flow in a vertical slot fishway with slopes of 5.06 and 10.52%. Two flow patterns existed in the fishway and for each one, two flow regions were formed in the pools: a jet flow region and a recirculating flow region. The mean kinetic energy decays rapidly in the jet region and the dissipation rate in most of the areas in the pool is less than 200?W/m3. For the jet flow, the nondimensional mean velocity profile across the jet agrees very well with that of a plane turbulent jet in the central part of the jet with some scatter near its boundaries. Its maximum velocity decays faster compared to a plane turbulent jet in a large stagnant ambient. The jet presents different turbulence structure for the two flow patterns and for each pattern, the turbulence characteristics appear different between the left and right halves of the jet. However, the turbulence characteristics show some similarity for each case. The normalized energy dissipation rate shows some similarity and has a maximum value on the center of the jet. The results are believed to provide useful insight on the turbulence characteristics of flow in vertical slot fishways and can be used to verify numerical models and also for guidance in the design of fishways in the future.  相似文献   

2.
Experimental Approach to the Hydraulics of Vertical Slot Fishways   总被引:2,自引:0,他引:2  
The performance of two particular designs of vertical slot fishways for two different slopes was studied in a wide range of discharges. Water depths were measured in almost the whole surface of pools. A linear relation between dimensionless discharge and depth of flow, and the same flow patterns for each design were found. With an acoustic Doppler velocimeter, three-dimensional velocities were measured at several levels in the entire pool to detect the structure of the flow and quantify velocity distribution. Two different regions in flow patterns were found: a direct flow region characterized by maximum velocities; and a recirculation region, defined by low velocities and horizontal eddies. For a given slope, the velocity at any point of the pool (particularly at the slot) may be considered independent of the discharge and constant with the depth. Some suggestions on kinetic turbulent energy are also made.  相似文献   

3.
Vertical slot fishways are hydraulic structures that allow the upstream migration of fish through obstructions in rivers. The appropriate design of a vertical slot fishway depends on the interplay between hydraulic and biological variables because the hydrodynamic properties of the fishway must match the requirements of the fish species for which it is intended. One of the primary difficulties associated with studies of real fish behavior in fishway models is that the existing mechanisms to measure the behavior of the fish in these assays, such as direct observation or placement of sensors on the specimens, are impractical or unduly affect the animal behavior. This paper proposes a new procedure for measuring the behavior of the fish. The proposed technique uses artificial neural networks and computer vision techniques to analyze images obtained from the assays by means of a camera system designed for fishway integration. It is expected that this technique will provide detailed information about the fish behavior, and it will help to improve fish passage devices, which is currently a subject of interest in the area of civil engineering. A series of assays has been performed to validate this new approach in a full-scale fishway model with living fish. We have obtained very promising results that allow accurate reconstruction of the movements of the fish within the fishway.  相似文献   

4.
In the past, solutions to the problem of flow past a floor slot in a rectangular open channel used to divert flow from one stream to another were obtained mainly on the basis of model tests or through the development of simplified theoretical expressions. In the present study, the free-surface turbulence model is applied to obtain the flow parameters such as pressure head distribution, velocity distribution, and water surface profile. The predictions of the proposed numerical model are validated using previous experimental data. In particular, the model predictions agree well with the test data related to flow parameters. The study indicates that the free-surface turbulence model developed is an efficient and useful tool for predicting characteristics of free surface flows such as flow past a floor slot. For flow past an open-channel floor slot, a model that is properly validated can be used to predict the flow characteristics under various flow configurations encountered in the field, without resorting to expensive experimental procedures.  相似文献   

5.
The “velocity pulse model” simulates the transfer of turbulence from flowing water into a sediment bed, and its effect on the diffusional mass transfer of a solute (e.g., oxygen, sulfate, or nitrate) in the sediment bed. In the “pulse model,” turbulence above the sediment surface is described by sinusoidal variations of vertical velocity in time. It is shown that vertical velocity components dampen quickly inside the sediment when the frequency of velocity fluctuations is high and viscous dissipation is strong. Viscous dissipation (ν) inside the sediment is related to the apparent viscosity depending on the structure of the sediment pore space, i.e., the porosity and grain diameter, as well as inertial effects when the flow is turbulent. A value ν/ν0 between 1 and 20 (ν0 is kinematic viscosity of water) has been considered. Turbulence penetration into the sediment is parametrized by the Reynolds number Re = UL/ν and the relative penetration velocity W/U, where U=amplitude of the velocity pulse; and W=penetration velocity; L = WT=wave length of the velocity pulse; and T is its period. Amplitudes of vertical velocity components inside the sediment and their autocorrelation functions are computed, and the results are used to estimate eddy viscosity inside the sediment pore system as a function of depth. Diffusivity in the sediment pore system is inferred by using turbulent or molecular Schmidt numbers. Turbulence penetration from flowing water can enhance the vertical diffusion coefficient in a sediment bed by an order of magnitude or more. Penetration depth of turbulence is higher for low frequency velocity pulses. Vertical diffusivity inside the pore system is shown to decrease more or less exponentially with depth below the sediment/water interface. Vertical diffusivities in a sediment bed estimated by the “velocity pulse model” can be used in pore water quality models to describe vertical transport from or into flowing surface water. The analysis has been conducted for a conservative material, but source and sink terms can be added to the vertical transport equation.  相似文献   

6.
Basic fluid dynamic features of combined electromagnetic stirring, EMS, and gas stirring (EMGAS) have been studied in the present work. A transient and turbulent multiphase numerical flow model was built. Simulations of a real size ladle furnace were conducted for 7 cases, operating with and without combined stirring and varying the argon gas inlet plug position. The results of these simulations are compared considering melt velocity, melt turbulence, melt/slag‐interface turbulence and dispersion of gas bubbles. An experimental water model was also built to simulate the effects of combined stirring. The water model was numerically simulated and visual comparison of the gas plume shape and flow pattern in the numerical and in the experimental model was also done for 3 flow situations. The results show that EMGAS has a strong flexibility regarding the flow velocity, gas plume, stirring energy, mixing time, slag layer, etc.  相似文献   

7.
This paper describes a series of novel experiments testing the relative efficiencies in passing juvenile salmon (parr) through a range of model fish passes incorporating devices such as vertical slots, orifices, weirs, and combinations of all three. The hydraulic parameters—head loss, velocity patterns, and turbulence structure—were measured under each set of test conditions. A significantly higher proportion of fish moved through submerged orifices and vertical slots than through overflow weirs for any given flow rate, velocity, and head loss. The orifice and vertical slot efficiencies were directly correlated to the velocities at their entrances. To reach the tested devices, salmon parr tended to remain near the bottom of the flume and followed paths providing them with low velocities and cover along the sides of the test arena. The movements of salmon approaching entrances were consistent with energy-conserving strategies. The paper presents a tentative approach for computing energy expenditure for a range of fish pass devices.  相似文献   

8.
Settling and entrainment are the dominant processes governing noncohesive particle concentration throughout the water column of salt-wedge estuaries. Determination of the relative contribution of these transport processes is complicated by vertical gradients in turbulence and fluid density. A differential-turbulence column (DTC) was designed to simulate a vertical section of a natural water column. With satisfactory characterization of turbulence dissipation and saltwater entrainment, the DTC facilitates controlled studies of suspended particles under estuarine conditions. The vertical decay of turbulence in the DTC was found to obey standard scaling law relations when the characteristic length scale for turbulence in the apparatus was incorporated. The entrainment rate of a density interface also followed established grid-stirred turbulence scaling laws. These relations were used to model the change in concentration of noncohesive particles above a density interface. Model simulations and experimental data from the DTC were consistent over the range of conditions encountered in natural salt-wedge estuaries. Results suggest that when the ratio of entrainment rate to particle settling velocity is small, sedimentation is the dominant transport process, while entrainment becomes significant as the ratio increases.  相似文献   

9.
A chimera overset grid flow solver is developed for solving the unsteady Reynolds-averaged Navier-Stokes (RANS) equations in arbitrarily complex, multiconnected domains. The details of the numerical method were presented in Part I of this paper. In this work, the method is validated and applied to investigate the physics of flow past a real-life bridge foundation mounted on a fixed flat bed. It is shown that the numerical model can reproduce large-scale unsteady vortices that contain a significant portion of the total turbulence kinetic energy. These coherent motions cannot be captured in previous steady three-dimensional (3D) models. To validate the importance of the unsteady motions, experiments are conducted in the Georgia Institute of Technology scour flume facility. The measured mean velocity and turbulence kinetic energy profiles are compared with the numerical simulation results and are shown to be in good agreement with the numerical simulations. A series of numerical tests is carried out to examine the sensitivity of the solutions to grid refinement and investigate the effect of inflow and far-field boundary conditions. As further validation of the numerical results, the sensitivity of the turbulence kinetic energy profiles on either side of the complex pier bent to a slight asymmetry of the approach flow observed in the experiments is reproduced by the numerical model. In addition, the computed flat-bed flow characteristics are analyzed in comparison with the scour patterns observed in the laboratory to identify key flow features responsible for the initiation of scour. Regions of maximum shear velocity are shown to correspond to maximum scour depths in the shear zone to either side of the upstream pier, but numerical values of vertical velocity are found to be very important in explaining scour and deposition patterns immediately upstream and downstream of the pier bent.  相似文献   

10.
Numerical Modeling of Three-Dimensional Flow Field Around Circular Piers   总被引:1,自引:0,他引:1  
A three-dimensional numerical model FLUENT is used to simulate the separated turbulent flow around vertical circular piers in clear water. Computations are performed using different turbulence models and results are compared with several sets of experimental data available in the literature. Despite commonly perceived weakness of the k-ε model in resolving three-dimensional (3D) open channel and geophysical flows, several variants of this turbulence model are found to have performed satisfactorily in reproducing the measured velocity profiles. However, model results obtained using the k-ε models show some discrepancy with the measured bed shear stress. The Reynolds stress model performed quite well in simulating velocity distribution on flat bed and scour hole as well as shear stress distribution on flat bed around circular piers. The study demonstrates that a robust 3D hydrodynamic model can effectively supplement experimental studies in understanding the complex flow field and the scour initiation process around piers of various size, shape, and dimension.  相似文献   

11.
Cases of pipeline damage caused by landslides are common in coastal or mountainous regions, where a continuous monitoring/repair activity is planned in order to maintain their serviceability. The analysis of the soil–structure interaction phenomenon can be invoked to improve the planning and design of buried pipelines, to guide monitoring, and to reduce the risk of damage or failure. Two different approaches are considered in this paper: small scale laboratory tests and numerical simulations using the distinct element method (DEM). The experimental setup consists of a box filled with sand and water. Several experiments were performed, in which the diameter and the depth of the tube varied. The numerical simulations are divided in two separate series: in the first, the numerical model is calibrated and its reliability in reproducing the experimental tests is checked; in the second series, the direction of the relative displacement between the tube and the surrounding “numerical soil” varies over the range ±90° with respect to the horizontal. In the latter, both vertical and horizontal components of the drag force are measured and the corresponding interaction diagrams are constructed. The DEM simulations provide useful information about the shape of the failure mechanisms and the force transfer within the soil.  相似文献   

12.
A three-dimensional numerical study is presented for the calculation of turbulent flow in compound channels. The flow simulations are performed by solving the three-dimensional Reynolds-averaged continuity and Navier–Stokes equations with the k?ε turbulence model for steady-state flow. The flow equations are solved numerically with a general-purpose finite-volume code. The results are compared with the experimental data obtained from the UK Flood Channel Facility. The simulated distributions of primary velocity, bed shear stress, turbulent kinetic energy, and Reynolds stresses are used to investigate the accuracy of the model prediction. The results show that, using an estimated roughness height, the primary velocity distributions and the bed shear stress are predicted reasonably well for inbank flows in channels of high aspect ratio (width/depth ≥ 10) and for high overbank flows with values of the relative flow depth greater than 0.25.  相似文献   

13.
The present paper introduces induced airflow as an effective means for removal of contaminants from underground enclosed spaces. The airflow is caused by natural convection in a vertical duct which absorbs solar irradiation outside the building. Experimental studies and three-dimensional numerical simulations have been performed in a scaled-down laboratory model. The experiments included temperature and velocity measurements and flow visualization. The results obtained from the simulations are fully supported by the experimental results, indicating that effective ventilation by the proposed method is achievable. For real-size structures, three-dimensional computer simulations have been performed using a standard k-ε turbulence model. The results yield a detailed flow field inside the enclosure for various configurations of the ducts and partitions. Rate of air change is calculated both for the whole enclosure, and for the regions above the floor where contaminants like radon tend to accumulate. By adjustment of openings in the basement, the ceiling may be cleared of contaminants as well. It is shown that a properly designed structure, even at low solar fluxes, can provide adequate ventilation of a real-size underground enclosure.  相似文献   

14.
Mean and turbulent flow characteristics on the upstream and downstream sides of the screen in a flow diversion channel have important implications for operation and maintenance (e.g., sedimentation) and for assessing fish behavior related to flow turbulence. This technical note extends an earlier study on mean flow near screens to turbulence characteristics. Acoustic Doppler velocimeter was used to explore three-dimensional mean and turbulent flow characteristics on the upstream and downstream sides of vertical angled fish screens. The present study confirms the two-dimensional mean velocity observations of the previous experimental work and shows that the vertical mean velocities are less than 10% of the local magnitudes of longitudinal velocity and hence can be ignored. Horizontal components of the mean velocity on the downstream side of the screen were relatively small, but the turbulent velocity fluctuations were two to three times as intense as those measured on the upstream side.  相似文献   

15.
This paper documents measurements of the mean velocity field and turbulence statistics of an isothermal, round jet entering a shallow layer of water. The lower boundary of the jet was a solid wall and the upper boundary a free surface. The jet axis was midway between the solid wall and the free surface in all cases. Experiments were performed at a Reynolds number of 22,500 for water layer depths 15, 10, and 5?times the jet exit diameter (9?mm). Particle image velocimetry measurements were made on vertical and horizontal planes—both containing the axis of the jet. The measurements were taken from 10 to 80 jet diameters downstream. Results showed that, for the highly confined cases at downstream locations, the axial velocity was quite uniform over the depth, with a mild peak below the jet axis. In the horizontal plane, the velocity profiles were slightly narrower than the free jet profile, but in the vertical plane, they were wider. The mean vertical velocity profiles showed that entrainment was suppressed in the vertical direction. At the same time, the lateral velocity profiles indicate that fluid flows from the sides toward the jet centerline. For the shallow cases, the mean vertical velocity becomes negative over most of the depth at downstream locations, indicating that this inflow from the sides is directed downward toward the solid wall. The relative turbulence intensity results were suppressed in the axial and vertical directions and mildly enhanced in the lateral direction. As well, the Reynolds shear stress in the vertical plane was significantly reduced by the vertical confinement, while in the horizontal plane it was only slightly affected by the confinement.  相似文献   

16.
Generalized Study of Hydraulics of Culvert Fishways   总被引:1,自引:0,他引:1  
This study presents a comprehensive analysis of the experimental observations, collected previously in an extended project on culvert fishways with offset baffle, slotted weir baffle, weir baffle, spoiler baffle, Alberta fishweir, and fishbaffle systems. It has been found that a general correlation exists between the dimensionless discharge Q? = Q/ and the relative depth of flow (y0/D) for each value of the relative baffle height (h/D). Furthermore, for relative baffle heights in the practical range of 0.1–0.15, longitudinal baffle spacing should be limited to a maximum of D. The velocity field in the centerplane of each of these culvert fishways was analyzed and was found to be similar with the similarity profiles having different shapes for different baffle systems. A general correlation was also found for the normalized velocity scale. Even though most of the baffle systems worked reasonably well in the range of parameters recommended, the weir and slotted weir baffle systems are simpler yet equally effective. The results presented in this paper will hopefully facilitate the design and building of successful culvert fishways.  相似文献   

17.
The fluid flow in a twin‐roll strip caster is investigated by physical and numerical simulation on a 1:1‐scale water model. A laser‐optical measurement technique (Laser Doppler Anemometry ‐ LDA) is used to validate the numerical results for the water flow. The numerical simulations are then transferred to the melt flow in the strip caster. The investigations are focused on different SEN concepts (submerged entry nozzle), a single‐nozzle system with two outlet ports and a double‐nozzle system with one outlet port each. The Influence of these concepts on the velocity, turbulence, and temperature distribution inside the liquid pool between the casting rolls and on the solidification and growth of the strip shells are investigated by numerical simulations (Computational Fluid Dynamics ‐ CFD). The non‐isothermal melt flow is calculated considering the solidification enthalpy as well as the behaviour of the solidifying melt. In addition to the numerical simulations of the melt flow inside the pool the temperature distribution in the cast strip is simulated. The SEN concept directly correlates with the temperature distribution Inside the strip. Furthermore, the surface temperature of the strip below the outlet of the roll gap is measured using a line‐scanner and is compared with the CFD simulation. In order to simulate the shape of the free surface in the liquid pool, CFD simulations of the water flow in the physical model are carried out using a Volume of Fluid model (VoF). This two‐phase model is able to reproduce free surface waves.  相似文献   

18.
Most of the computational models of curved open channel flows use the conventional depth averaged De St. Venant equations. De St. Venant equations assume uniform velocity and hydrostatic pressure distributions. They are thus applicable only to cases of meandering rivers and curved open channels where vertical details are not of importance. The two-dimensional vertically averaged and moment equations model, developed by the writers, is used to study the effect of applying different distribution shapes for velocities and pressure on the simulation of curved open channels. Linear and quadratic distribution shapes are proposed for the horizontal velocity components, while a quadratic distribution shape is considered for the vertical velocity. Linear hydrostatic and quadratic nonhydrostatic distribution shapes are proposed for the pressure. The proposed model is applied to problems involved in curved open channels with different degrees of curvature. The implicit Petrov–Galerkin finite element scheme is applied in this study. Computed values for depth averaged longitudinal and transverse velocities across the channel width and vertical profiles of longitudinal and transverse velocities are compared to the observed experimental data. A fairly good agreement is attained. Predictions of overall flow characteristics suggest that the results are not very sensitive to different approximations of the preassumed applied velocity and pressure distribution shapes.  相似文献   

19.
采用数值方法研究了狭缝射流冲击柱状凸形表面的流动换热特性,通过四种湍流模型计算结果与实验数据对比,确定了湍流模型适用性.以压力梯度分布为依据,重点分析了狭缝射流沿柱状凸形表面的流动结构和边界层分离特点及柱状凸形表面的强化换热特性.结果表明:RNG k-ε和Realizable k-ε模型具有预测适应性;狭缝射流冲击至柱状凸形表面,气体沿表面运动,速度降低,并在流动下游发生边界层分离;量纲一的逆压梯度随量纲一的曲率半径(D/B)的减小而增大,使得边界层分离更早出现;驻点区域换热Nu随量纲一的曲率半径(D/B)的减小而获得增强,但流动进入下游后,D/B对换热基本无影响;压力梯度是影响狭缝射流冲击柱状凸形表面换热分布的重要因素.   相似文献   

20.
This paper studies laboratory open-channel confluences using a 3D, elliptic solution of the Reynolds-averaged Navier-Stokes equations, including a method for approximating the effects of water surface elevation patterns and a renormalization group modified form of the k-ε turbulence model. The model was tested by comparison with laboratory measurements of an asymmetric tributary junction. This suggests that although the model is unable to reproduce the quantitative detail (notably upwelling velocity magnitudes) of the flow structures as measured in laboratory experiments, statistically significant aspects of the experimental observations are reproduced. The model is used to (1) describe and explain the characteristic flow structures that form in a confluence with one of the tributaries angled at 45°, both with and without an elevation difference (bed discordance) in the angled tributary; and (2) investigate the relative importance of junction angles (30°, 45°, and 60°), bed discordance, and ratio of mean velocities in the tributary channels upon flow structures. This shows that bed discordance significantly enhances secondary circulation because of the effects of flow separation in the lee of the bed step, which significantly increases lateral pressure gradients at the bed and reduces water surface superelevation in the center of the tributary and water surface depression at the downstream junction corner. Extension to consideration of a number of junction angles, levels of bed discordance, and velocity ratios suggests that a small (10%) reduction in tributary depth can significantly increase the intensity of secondary circulation, albeit in a relatively localized manner. Simulations involving a numerical tracer illustrate the importance of bed discordance for mixing between the two flows and question the use of simple 2D parameterizations of mixing processes that do not consider bed discordance when the latter is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号