首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
在考虑了刀具和工件在切削力作用下的振动、刀具的安装误差和工件的装夹误差对刀具相对工件位姿的影响下,通过加工几何运动学建立刀刃点在加工特征点活动标架下的数学模型。根据局部活动标架特征,将铣削表面残高求解问题转化为求解非线性规划问题,通过求解非线性规划问题来预测铣削加工表面微观几何形貌及粗糙度,为合理选择工艺参数提供科学的依据。仿真试验和加工试验验证了所提出的方法的正确性和有效性。  相似文献   

2.
虚拟加工系统研制与加工误差分析   总被引:2,自引:0,他引:2  
面向数控车削加工过程研制了一个虚拟数控加工系统。该系统以Windows2000为开发平台,以Visual C 6.0为开发工具,基于OpenGL技术实现了数控车削加工过程3维仿真。该系统能够有效地仿真数控车削过程,具有更接近实际车削加工过程的特点。同时在仿真研究中,分析了加工过程中由切削力导致的加工误差,实现了对虚拟车削工件加工误差的预测。  相似文献   

3.
The fixture determines the workpiece position in a machining process; therefore, an increasing amount of attention has been given to fixture layout design. While machining, the workpiece position is affected by two major sources: (a) the locator displacement and (b) the force–deformation of the workpiece–fixture system. In the beginning of this paper, a geometric model considering the shape of a locator is developed to analyze the location performance, followed by the presentation of a simplified solving method and a location layout performance index. Second, to complete the force–deformation analysis, a finite element method-based force–deformation model is built and accelerated by a new method with a lower computer memory cost. Based on these two models, multiple objects of fixture layout optimization problems are proposed, and a multi-objective genetic algorithm-based optimization method is constructed. Finally, testing examples are approved to examine the validity of the method represented in this paper. These methods can provide a more accurate prediction of the locating performance in more widely used cases, and they have faster calculating speeds with lower computer memory costs.  相似文献   

4.
Low weight and good toughness thin plate parts are widely used in modern industry, but its flexibility seriously impacts the machinability. Plenty of studies focus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surface errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling forces calculated by the micro-unit cutting force model are loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed method not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy.  相似文献   

5.
基于工件的准静态受力分析 ,运用经典Hertz接触理论 ,计算夹具 工件接触区的变形。根据多刚体运动学 ,建立表面加工误差和接触变形的关系 ,对加工误差进行预报。此方法也可用来计算定位基准误差对加工误差的影响。  相似文献   

6.
结合被加工零件的结构及加工工艺特点,设计制造了一款专用铣床气动多功能夹具。为保证夹具具有良好的强度,运用ANSYS Workbench软件对夹具工件系统进行了平面铣削和钻孔过程受力仿真分析。结果表明:装配件在钻削力和切削力作用下,产生的最大应力远小于材料的屈服强度,且最大位移值在加工公差范围内。经样品试制、现场实验检验,使用专用夹具生产出来的产品,其工件尺寸和几何误差均满足精度要求,达到预期目标。因此,该夹具结构设计合理,具有一定的推广应用价值。  相似文献   

7.
Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing erro...  相似文献   

8.
工件在实现定位后,在加工过程中将要受到工件重力和切削力等外力的作用。为使工件保持定位精度与生产安全性,必须保证工件在整个加工过程中具有稳定性。系统地讨论了工件稳定性建模及其求解方法,在摩擦锥线性近似以及变量非负转换的基础上,提出了工件稳定性的定量判断准则;利用线性规划方法对工件稳定性模型进行分析。结果表明,稳定性模型不仅能够验证工件的稳定性,而且还能够分析夹紧力大小、作用点以及夹紧顺序的合理性。这种方法既适用于夹具夹持稳定性分析,也适用于机械手的抓取稳定性分析。  相似文献   

9.
数控加工碰撞干涉检验的新方法   总被引:4,自引:1,他引:3  
刀具与工作台、夹具的碰撞,刀具过切及碰伤工件成型表面是数控加工中较难解决的三个关键问题。本文提出了一种基于B-rep表示的碰撞干涉检验算法,用于数控加工过程仿真,能较好地解决上述问题及刀具的少切问题。  相似文献   

10.
阐述在轮毂的数控车削加工过程中,由于受到夹具的夹紧力和切削力的作用,致使工件在加工时产生变形,尺寸精度大大超差,严重时甚至工件会脱落于夹具,导致工件报废。经过本人认真研究,通过改进夹爪、调整工件夹紧位置,适当改变夹头夹紧力及优化加工工艺等,从而大大提高了加工精度和生产效率,降低了劳动强度,节约生产成本。希望以上的方法能对从事相关工作的人员有一定的借鉴作用。  相似文献   

11.
Machining fixtures are used to locate and constrain a workpiece during a machining operation. To ensure that the workpiece is manufactured according to specified dimensions and tolerances, it must be appropriately located and clamped. Minimising workpiece and fixture tooling deflections due to clamping and cutting forces in machining is critical to machining accuracy. An ideal fixture design maximises locating accuracy and workpiece stability, while minimising displacements.The purpose of this research is to develop a method for modelling workpiece boundary conditions and applied loads during a machining process, analyse modular fixture tool contact area deformation and optimise support locations, using finite element analysis (FEA). The workpiece boundary conditions are defined by locators and clamps. The locators are placed in a 3-2-1 fixture configuration, constraining all degrees of freedom of the workpiece and are modelled using linear spring-gap elements. The clamps are modelled as point loads. The workpiece is loaded to model cutting forces during drilling and milling machining operations. Fixture design integrity is verified. ANSYS parametric design language code is used to develop an algorithm to automatically optimise fixture support and clamp locations, and clamping forces, to minimise workpiece deformation, subsequently increasing machining accuracy. By implementing FEA in a computer-aided-fixture-design environment, unnecessary and uneconomical “trial and error” experimentation on the shop floor is eliminated.  相似文献   

12.
Nonlinear errors in five-axis machining process are caused due to the nonlinear motions of the rotational axes, which are inevitable. For the RT-type machine tool, the workpiece setup location on the working table has a direct effect on the nonlinear errors, thus there must be an optimal setup position which can reduce the nonlinear errors. Today’s five-axis machine tools are mostly equipped the with the RTCP (rotational tool center point) function, with which the NC program becomes independent from the workpiece setup. In this paper, we have focused on finding the optimal workpiece setup for the RT-type machine tool with RTCP function, more specifically, the Mikron UCP 600 five-axis machine tool in our lab. The kinematics of the machine tool is briefly analyzed. Based on that, the nonlinear error evaluation method with RTCP interpolation is derived. With this method, nonlinear errors can actually be considered as a function of the workpiece setup position. Then, the particle swarm optimization (PSO) is applied to find the optimal workpiece setup, in which a mutation operation is used since PSO traps into local optimum easily. The proposed optimal workpiece setup method is implemented and tested. Example results show that the optimal setup with least nonlinear errors can be found. Some interesting results also show that the nonlinear errors are not sensitive with the z component of the workpiece setup vector. The proposed optimization is nearly zero-cost and easy to both understand and implement, yet has a potential to reduce the nonlinear errors and thus to improve the accuracy of five-axis machining.  相似文献   

13.
In aerospace industry, thin-walled workpiece milling is a critical task. Also, the machining vibration is a major issue for the accuracy of the final part. In this study, a new dynamic analytical model is proposed to determine the effect of damping factor on the dynamic response of thin-walled workpiece in machining. A complex structure workpiece is equivalent to a thin plate. The fixture constrains and the damping factor are crucial elements of this thin plate. Therefore, the magnetorheological fluid flexible fixture is designed to suppress the machining vibration in machining process. Then, the general dynamic cutting force model and the damping force model are proposed for the key dynamic equation for the prediction of dynamic response to evaluate the stability of the milling process with and without the damping control. Finally, the feasibility and effectiveness of the proposed model is validated by machining tests. The predicted values match on the experiment results.  相似文献   

14.
虚拟加工中的加工误差分析与预测   总被引:8,自引:0,他引:8  
分析了影响虚拟环境下复杂曲面产品数字化端铣加工误差产生的主要因素,综合考虑刀具和工件的柔度,同时考虑加工表面的变形敏感度,讨论面向虚拟制造的加工尺寸误差预测模型总体框架,提出了一个端铣加工过程表面加工尺寸误差预测模型。所给出的表面误差预测模型较全面地考虑了端铣加工过程,适于多种加工条件,能够反映端铣加工过程由切削力导致的系统变形对加工误差所造成的影响。最后给出了一个仿真实例。  相似文献   

15.
In machining fixtures, minimizing workpiece deformation due to clamping and cutting forces is essential to maintain the machining accuracy. This can be achieved by selecting the optimal location of fixturing elements such as locators and clamps. Many researches in the past decades described more efficient algorithms for fixture layout optimization. In this paper, artificial neural networks (ANN)-based algorithm with design of experiments (DOE) is proposed to design an optimum fixture layout in order to reduce the maximum elastic deformation of the workpiece caused by the clamping and machining forces acting on the workpiece while machining. Finite element method (FEM) is used to find out the maximum deformation of the workpiece for various fixture layouts. ANN is used as an optimization tool to find the optimal location of the locators and clamps. To train the ANN, sufficient sets of input and output are fed to the ANN system. The input includes the position of the locators and clamps. The output includes the maximum deformation of the workpiece for the corresponding fixture layout under the machining condition. In the testing phase, the ANN results are compared with the FEM results. After the testing process, the trained ANN is used to predict the maximum deformation for the possible fixture layouts. DOE is introduced as another optimization tool to find the solution region for all design variables to minimum deformation of the work piece. The maximum deformations of all possible fixture layouts within the solution region are predicted by ANN. Finally, the layout which shows the minimum deformation is selected as optimal fixture layout.  相似文献   

16.
虚拟加工过程薄壁工件铣削变形模型研究   总被引:1,自引:0,他引:1  
在薄壁工件的切削加工中,工件的受力变形是影响加工过程的一个主要因素,文中针对薄壁工件侧面的立铣加工,建立了不同复杂度的切削过程模型,以仿真工件薄壁在加工中受到切削力发生的变形,虚拟实现受到工件变形影响下的切削过程。通过仿真创成的工件表面形貌与实际切成的工件表面的比较,对文中各模型进行了验证。  相似文献   

17.
In manufacturing engineering, localization accuracy is a key concern in the design of a fixture to specify a locating scheme and tolerance allocation. This paper presents a general analysis methodology that is able to characterize the effects of localization source errors based on the position and orientation of the workpiece. From this methodology, a fixture model is formulated by taking into account the overall errors among the system consisting of the workpiece and the fixture in the design of the fixture locating scheme. With this model, the locating principle and a criterion of the robust optimal design are then proposed to improve the localization quality of the fixture. Some examples are provided and allow for a detailed discussion about how to carry out the optimal design of the locating scheme. A comparative study is also made between the optimal solution and the empirical one. Finally, an experiment is made to validate the fixture locating scheme for a cylindrical workpiece. We conclude that this robust design method effectively achieves stable machining precision in workpieces.  相似文献   

18.
In precision hard turning, tool flank wear is one of the major factors contributing to the geometric error and thermal damage in a machined workpiece. Tool wear not only directly reduces the part geometry accuracy but also increases the cutting forces drastically. The change in cutting forces causes instability in the tool motion, and in turn, more inaccuracy. There are demands for reliably monitoring the progress of tool wear during a machining process to provide information for both correction of geometric errors and to guarantee the surface integrity of the workpiece. A new method for tool wear monitoring in precision hard turning is presented in this paper. The flank wear of a CBN tool is monitored by feature parameters extracted from the measured passive force, by the use of a force dynamometer. The feature parameters include the passive force level, the frequency energy and the accumulated cutting time. An ANN model was used to integrate these feature parameters in order to obtain more reliable and robust flank wear monitoring. Finally, the results from validation tests indicate that the developed monitoring system is robust and consistent for tool wear monitoring in precision hard turning.  相似文献   

19.
Development of an automatic arc welding system using SMAW process   总被引:1,自引:0,他引:1  
In end milling of pockets, variable radial depth of cut is generally encountered as the end mill enters and exits the corner, which has a significant influence on the cutting forces and further affects the contour accuracy of the milled pockets. This paper proposes an approach for predicting the cutting forces in end milling of pockets. A mathematical model is presented to describe the geometric relationship between an end mill and the corner profile. The milling process of corners is discretized into a series of steady-state cutting processes, each with different radial depth of cut determined by the instantaneous position of the end mill relative to the workpiece. For the cutting force prediction, an analytical model of cutting forces for the steady-state machining conditions is introduced for each segmented process with given radial depth of cut. The predicted cutting forces can be calculated in terms of tool/workpiece geometry, cutting parameters and workpiece material properties, as well as the relative position of the tool to workpiece. Experiments of pocket milling are conducted for the verification of the proposed method.  相似文献   

20.
In any machining fixture, the workpiece elastic deformation caused during machining influences the dimensional and form errors of the workpiece. Placing each locator and clamp in an optimal place can minimize the elastic deformation of the workpiece, which in turn minimizes the dimensional and form errors of the workpiece. Design of fixture configuration (layout) is a procedure to establish the workpiece–fixture contact through optimal positioning of clamping and locating elements. In this paper, an ant colony algorithm (ACA) based discrete and continuous optimization methods are applied for optimizing the machining fixture layout so that the workpiece elastic deformation is minimized. The finite element method (FEM) is used for determining the dynamic response of the workpiece caused due to machining and clamping forces. The dynamic response of the workpiece is simulated for all ACA runs. This paper proves that the ACA-based continuous fixture layout optimization method exhibits the better results than that of ACA-based discrete fixture layout optimization method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号