首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For pt. I see ibid., vol. 9, no. 1, p. 84-91 (2002). Presents a study of streamer inception in transformer oil, in a "semiuniform" geometry under impulse voltage. This geometry consists of parallel plane electrodes, with a thin triggering point of calibrated size emerging at the center of one plane. By reducing the length of the point, it is possible to move progressively from a point-plane geometry, up to a quasi-uniform geometry. Compared to a point-plane gap, the initiation of streamers is impeded due to the presence of a metallic plane behind the triggering point, that reduces the tip field. Field calculations allow to extrapolate the results obtained to the case of microscopic surface protrusions and particles. It is possible to predict the streamer initiation voltage, and hence the breakdown voltage under uniform field, from the shape of the protrusion and from streamer initiation fields measured in point-plane geometry  相似文献   

2.
The present paper is mainly devoted to phenomena occurring in point-plane electrode geometry, where breakdown is the result of the initiation and propagation of prebreakdown phenomena called "streamers". In this configuration, an investigative study of the streamer initiation processes, requiring very high electric field strengths (/spl sim/ MV/cm), and of propagation (requiring low electric field, /spl sim/ kV/cm) can easily be carried out for negative streamer development as well as for the positive case. From analysis of experimental results in pure liquids the physical processes connected with streamer initiation and propagation, particularly the electronic ones, are presented and discussed. Estimations of the main parameters of slower subsonic streamers and of the faster filamentary ones (such as field strength at the streamer tip, field inside the channel, charge density, etc.) have been obtained from qualitative considerations and compared to experimental data.  相似文献   

3.
Experimental results on the propagation of positive streamers along contoured, axially symmetric, polytetrafluoroethylene (PTFE) insulation surfaces are presented. A plane parallel electrode configuration provides a substantially uniform electric field for streamer propagation and a point electrode at the ground plane initiates the avalanche process. Basic streamer properties of velocity and propagation probability with field strength are measured and compared with the corresponding characteristics of air and cylindrical insulators. Several insulator profiles are investigated and the occurrence of multiple streamer paths is demonstrated, which are generally distinguishable as surface and air components with different propagation velocities. Comparative data of the breakdown fields for the various insulators is included  相似文献   

4.
This paper presents experimental data and calculations concerning the electrical properties of positive streamers in mineral oil at large gaps and HV. The experiments concern the measurement of charge, electric field, and the determination of the potential drop along streamers, either in the liquid alone, or for streamers guided within insulating tubes. Calculations of charge and field distribution around streamers are carried out by charge simulation. To do this, streamers are represented by objects with simple shapes (spheres or cylinders) equivalent to their macroscopic aspect. These models lead to a correct agreement with measured streamer charge and field on the plane electrode. Qualitative correlations are established between calculated field distributions and streamer behavior such as velocity, transitions between propagation modes. It is also concluded that the potential drop in streamers and branching both act as regulating mechanisms that help to keep the streamer tip field, and hence the velocity, constant over a wide voltage range  相似文献   

5.
This paper presents an experimental study of the initiation of positive streamers under step voltage in point-plane geometry, in a number of hydrocarbon liquids. The experimental conditions (point tip radius, pulse risetime, gap length) were strictly controlled in order to take valid measurements of the initiation fields and threshold propagation voltages of streamers. Transient currents associated with the initiation of positive streamers were recorded down to the μA range with a sensitive differential measurement technique. The different current shapes obtained in the liquids studied are presented. The measured inception fields of positive streamers and propagation thresholds of filamentary streamers are discussed according to the properties of the liquids (ionization potentials and mobility of charge carriers)  相似文献   

6.
This paper deals with initiation and propagation processes of streamer discharges in water subjected to high-speed repetitive voltage pulse. The 50%-duty repetitive pulses were produced by the reciprocal traveling wave in a pulse forming cable which was connected with a point-plane electrode gap in a water-cell. Laue plot of time lag distributions for the streamer initiation indicated that the initiation probability during the second pulse application became much higher than that during the first pulse application. We concluded that the change in space charges distribution due to internal field during the rest-time after the first pulse enhanced the streamer initiation probability at the second pulse application. Temporal development in the positive streamers during the repetitive pulse application was observed using a gated image intensifies. When the pulse was relatively high, the streamer discharges started the propagation at the first pulse and then the discharge channel became long step by step at the subsequent pulse applications. It was also found that the periodical emission due to excitation of OH radicals was detected for a long period after the development of the streamer discharge in a spectroscopic measurement.  相似文献   

7.
This paper presents an experimental study of positive streamer propagation in mineral oil, in large point-plane gaps under impulse voltage. A systematic investigation was done concerning the influence of gap distance (⩽35 cm), and voltage from streamer inception up to large overvoltages. The measurements presented concern breakdown voltage measurements, time to breakdown, visualization of streamers (streak and still photographs), electrical measurements (transient current, charge), light emission intensity. Streamers are characterized and then classified into different modes (2nd, 3rd and 4th modes) according to their propagation velocities up to more than 100 km/s. According to the applied voltage, transitions between modes are observed, and correlations are established between charge, shape, and streamer velocity. The physical mechanisms as well as practical consequences are then discussed  相似文献   

8.
A 67 mm point-plane gap immersed in transformer oil, at atmospheric pressure, stressed with a 1/180 μs impulse, has been studied by recording gap current and light emission. Time-resolved images were obtained by use of an image converter camera. Minimum breakdown voltages were twice as high for negative as for positive points. All streamers at these and higher voltages were supersonic, with negative streamer velocities ⩽50 km/s. The speed of the positive streamer gradually increased to 19 km/s with increasing voltage, where it saturated. At high stresses the propagating positive streamer has been observed to switch to a faster mode which propagates with speeds in the 65 to 200 km/s range. Positive streamers were bush shaped to 2× the minimum breakdown voltage, the branching diminishing with increased voltage. Negative streamers were coarsely bush shaped or usually tree shaped. For both polarities, light emission consisted of a background light, with superposed pulses corresponding to 15 ns wide current pulses of up to 10 A. The pulses are caused by very bright, brief re-illuminations of single streamer channels. The tips of positive streamers are considerably more luminous than the channels, indicating that electron multiplication may take place at the tips. A model of the streamers as being plasma filled channels may explain the re-illuminations  相似文献   

9.
Streamer discharges in tap water and distilled water have been generated by applying a voltage pulse from 120 to 175 kV and 500 ns duration to a wire-to-electrode configuration. Electrical and optical diagnostics were used to explore the temporal development of the streamers in tap and distilled water, at various applied voltages and both polarities. With the wire serving as anode, multiple, parallel streamer discharges were generated. The number density of these streamers along the wire decreases with decreasing electric field on the surface of the wire. The dependence of the streamer density on electric field indicates the role of field enhancement at inhomogeneous microstructures along the wire as streamer initiation mechanism. The appearance of the discharge was different for tap and distilled water. However, the measured average streamer propagation velocity from the positive wire to the grounded plane electrode, of 32 mm//spl mu/s, was independent of the water conductivity and the applied voltage. This suggests the existence of a self-sustained electric field at the streamer head. With the wire serving as cathode, only a weak light emission from the area close to the wire was observed, and streamers did not appear for the same voltage amplitude as with the positive polarity. This suggests that an ionic current flowing in the water is not dominant in the streamer propagation process.  相似文献   

10.
This work is devoted to the modeling of branching streamers propagating in transformer oil using an equivalent electrical network and the electrical network computation. The proposed model enables one to determine the different characteristics of the streamer (i.e., the associated current and the electrical charge, the power and the energy injected in the liquid, the local electric field at the streamer head, the streamer shape and its velocity, the mobility of the charge carriers within the streamer channels, the local viscosity and temperature). It's shown through the simulated values of the mobility of charge carriers, the local viscosity and temperature that both electronic and gaseous mechanisms are implicated in the streamer development. The gaseous nature of streamers and the role of the local electric field are evident. The influence of the conductivity and additives as well as the electrode gap on the propagation velocity of positive streamers is analyzed.  相似文献   

11.
Results concerning the propagation of streamers along insulating surfaces under uniform electric field are presented. The basic properties of streamers, namely the electric field required for a stable propagation and the propagation velocity, have been measured and compared with propagation in air alone as a reference. The results have shown that in the experimental arrangement used significant space charges due to streamer branching are absent, therefore the properties observed are considered as characteristic of a single streamer. Streamers propagate stably with an intrinsic propagation field and a characteristic velocity that depend on the nature of the insulating material. For electric fields higher than the minimum field required for a stable propagation, a streamer system propagates with a `surface' and an `air' component  相似文献   

12.
Many previous studies of electrical breakdowns in dielectric liquids in point-plane geometry have examined the relationships among the breakdown structure (or speed), the electrode geometry (point radius, gap length), and/or voltage. This paper explores the hypothesis that, for streamers initiating from a point anode, the critical volume model used for similar geometry in gaseous dielectrics is useful in liquids. The assumption of the critical volume is shown to be consistent with experimental data. Specifically, a critical volume of 0.4-1.0 mum 3 is consistent with the location of streamer initiation, with the independence of the initiation voltage for the 2nd anode mode from the tip radius for sharp tips, and the measured free paths of electrons in cyclohexane for the energies of interest  相似文献   

13.
Inception and propagation of streamers in a point-plane gap, with and without pressboard interface parallel to the field, have been studied. Current and light emission have been recorded. Positive streamers propagate at ~2 to 4 mm/μs at voltages to 2× the minimum breakdown voltage. Above this voltage, a fast event (>100 mm/μs) may occur, preceded by streamers propagating with velocities in the 10 to 20 mm/μs range. The negative streamers have ~2× the breakdown voltage as the positive ones. Even negative streamers may develop into a slower kind of fast event. Solid pressboard parallel to the field does not change the breakdown voltage, but makes inception of fast events easier. The breakdown process in oil shows several similarities to a gas breakdown  相似文献   

14.
Results of predisruptive current, light and electrical charge measurements are presented for the liquids tetraester, transformer oil and cyclohexane, under point-plane electrode arrangements with negative and positive high DC voltages. Observed current and light pulses existed both in the kHz and the MHz frequency ranges for both polarities of the point electrode. The electrical charge for the current pulses either increased or decreased sharply whenever these pulses occurred. In general, three pulse regimes were evident: (1) current pulses with no associated light pulses, (2) current pulses correlated with light pulses and (3) light pulses with no associated current pulses. Analysis of the results obtained suggests the occurrence of charge injection followed by processes of bubble formation and electronic avalanche multiplication in the liquid phase, and partial discharges in localized expanding bubbles. The steplike propagation of streamers is explained and streamer velocities were estimated. Involvement of both electronic and gaseous phenomena in predisruptive processes is also suggested  相似文献   

15.
Presents a study of streamer inception in mineral transformer oil, in point-plane and rod-plane geometry under impulse voltage. The measurements performed with points and rods over a wide range of tip radii show a marked decrease of initiation fields when the electrode radius is increased. The initiation field is divided by 30 over the investigated range (from 1 μm points up to 2 cm rods). This effect compares fairly well with the "surface effect" known for breakdown voltages under uniform field with large electrodes. Plotting these results together shows the decrease of streamer initiation fields over a very wide electrode surface range (12 decades), proportional to S-0.17 (S: electrode surface area, cm2). These results suggest the influence of electrode surface defects on streamer initiation under impulse voltage  相似文献   

16.
In this paper the effect of tip curvature on the generation and propagation of prebreakdown density change streamer in cyclohexane was investigated. The streamer inception voltage increased with tip curvature, which was higher for a positive point than a negative one. The initial structure of the streamer was a single filament for both polarities in cyclohexane. For a negative point, the streamer structure changed from sphere to hemisphere, pagoda and bush-like form with increasing tip curvature and applied voltage. A slim channel connecting the streamer with needle tip was clearly observed for tip radii >5 μm, while it was not for those <3 μm. For positive streamers, on the other hand, it changed from slow bush-like form to fast filamentary with increasing tip curvature and applied voltage. Both magnitude and propagating speed of the streamer at its inception voltage increased with a tip curvature. After the growth stopped, they broke up into small bubbles and contracted with damped oscillation. From the spatial distribution of the field strength between the point and plane calculated by the finite element method, it was found that there exists a specific distance from the tip where the field strength is equal under any tip radii used in this study for both polarities. This distance and field strength may considered to be the minimum length and field for an electron avalanche in liquid  相似文献   

17.
This paper presents the results of fundamental investigations on the inception and propagation of corona discharge on an ice surface stressed with a standard lightning impulse voltage. High-speed photography and photomultiplier techniques were used to observe and record the propagation of the streamers. The effects of several experimental parameters such as freezing water conductivity and HV rod electrode radius on the streamer inception parameters were investigated. Moreover, time to first streamer, inception voltage and corresponding field, as well as streamer propagation velocity and charge deposited by a streamer on ice surface were measured. The results are discussed and emphases are laid on the main factors influencing the development of positive streamers on ice surface.  相似文献   

18.
This paper presents an experimental study of the propagation of prebreakdown phenomena in transformer oil, in large point-plane gaps (5 to 20 cm), in positive polarity under step and ac voltages. The prebreakdown phenomena are characterized via the simultaneous recordings of transient currents, charges, photocurrents, and high-speed photographs of the emitted light. In these experimental conditions, prebreakdown phenomena in oil are basically composed of weakly luminous branched filaments, most of the time not connected to the point electrode, and propagating continuously. Bright luminous fast discharges reilluminate periodically the main branch of the propagating discharge from the point electrode to the extremity of these weakly luminous filaments. Below the breakdown voltage, streamers stop at an average length which increases linearly with the voltage. Above a critical length, they cannot stop any more and lead to breakdown. The main propagation velocity remains constant throughout the propagation. These observations, which present a number of similarities with leader phenomena in gases, are then discussed  相似文献   

19.
In a uniform field arrangement, under direct voltage, positive streamer propagation and breakdown are investigated along cylindrical insulators with different profiles, inserted perpendicularly between two parallel plane electrodes. The basic properties of streamer propagation and breakdown, namely the electric field required for a stable propagation together with the associated velocity and the breakdown field together with time to breakdown, are measured as influenced by the pulse voltage amplitude used for the streamer initiation and by the insulator profile. It is shown that a strong relation between streamer propagation and breakdown exists, because the insulator profile exerts a similar influence on the breakdown and propagation fields. The effect of a shed on an insulating surface, forming an `obstruction' to streamer progress, is to increase the stability for propagation and breakdown fields, and to reduce the propagation velocity at all applied fields compared with those in the case of a smooth insulator. Along the surface of a smooth insulator, a streamer system propagates with a `surface' and an `air' component; however, a shed on an insulating surface modifies this system, resulting in only one component reaching the cathode  相似文献   

20.
正流注传播动力学特性随气压湿度的变化   总被引:1,自引:0,他引:1  
为了解流注传播电场测量中大气参数的影响,利用“三电极系统”研究了不同气压湿度条件下正流注的传播电场和传播速度。利用两个光电倍增管检测流注在平行极板间的传播,获得了流注传播电场的概率分布及平均传播速度,得到了无外加脉冲电压时流注传播的“稳态电场”与相对空气密度、湿度间的经验公式,并和其它研究者提出的公式进行了比较。研究表明:流注传播的“起始电场”和“稳态电场”随着外加脉冲电压的减小而增大,随着气压和湿度降低而减小;电场强度相同时,流注平均传播速度随着气压和湿度的增大而减小,其数量级为105m/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号