首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
以高温处理氯化镍作为热电池的正极材料制备热电池;用溶解理论解释了电池单体材料溢流现象,解决了电池的安全性问题;摸索了与之匹配的制备高比能量热电池所需电解质与负极材料,确定电解质为全锂电解质,负极为LiB合金;用浓差极化解释了氯化镍电池的电压起伏成因。所制备的氯化镍电池的单体电压比以二硫化钴为正极的电池单体电压高25%。与全锂电解质和LiB合金匹配制备的样品电池,比能量达到84Wh/kg。  相似文献   

2.
FeS_2和CoS_2是锂系热电池最常用的两种正极材料。经X射线衍射(XRD),扫描电子显微镜(SEM)以及热重分析(TGA)表征发现:二者具有相同的立方晶体结构,CoS_2的热分解温度比FeS_2高100℃左右。以LiB合金为负极材料、LiF-LiCl-LiBr低温共熔盐为电解质,分别采用CoS_2和FeS_2作为正极材料制备热电池,在500℃的温度下进行恒流放电实验。结果发现:在放电初期LiB/FeS_2体系的工作电压高于LiB/CoS_2体系,但在工作一段时间后被LiB/CoS_2体系反超;随着工作时间的延长,热电池可释放的电容量逐渐减少,LiB/FeS_2体系容量衰减的速率比LiB/CoS_2体系快。将热电池空载不同时间后再进行恒流放电,发现热电池实际可释放的电容量与工作时间呈现一元线性关系,以此计算出LiB/FeS_2电池和LiB/CoS_2电池的容量衰减率分别为17.7和3.92 C/min。  相似文献   

3.
王丽  张帅  赵海菁  唐其伟 《电源技术》2023,(8):1024-1027
以Fe2O3和Li2O为原料,采用高温固相法制备了Li5FeO4材料,并将该材料用作补锂添加剂在三元-硅碳电池体系中进行了补锂性能测试。测试结果表明,合成的Li5FeO4首次脱锂比容量为667.6 mAh/g,可逆比容量仅为1.3 mAh/g,是一种理想的补锂材料。在NCM正极-硅碳负极(750 mAh/g)的全电池体系中分别添加质量分数分别为5%和10%的Li5FeO4时,正极材料的可逆比容量分别为164.8和170.2 mAh/g,相比之下正极中不添加补锂剂时正极可逆比容量仅为142.5 mAh/g。此外,Li5FeO4的加入还可以有效提升电池的循环性能,添加10%Li5FeO4的全电池在300次循环后电池的容量保持率为84.6%,较之未添加补锂剂的电池提升8.3%。  相似文献   

4.
现代热电池电极材料现状及展望   总被引:5,自引:0,他引:5  
高俊奎  黄来和 《电源技术》2000,24(6):370-373
现代热电池基本电化学体系是锂合金 二硫化铁 (LiMx FeS2 )。锂铝 (LiAl)、锂硅 (LiSi)合金已广泛应用 ,三元锂合金也有报道 ,锂硼 (LiB)合金由于几乎完美的特性 (高电位、高容量 )现已引起人们特别关注。FeS2 电压较低 ,但容量大 ;五氧化二钒 (V2 O5)、锂钒氧 (LVO)等其它正极材料电压高、容量较小。热电池发展方向是大功率、长寿命 ,寻找新的热电池正极材料替代现有的FeS2 电极将是未来热电池电极活性材料研究重点  相似文献   

5.
孙国平  臧慧娟  陈新 《电池》2022,(3):346-349
在层状固溶体富锂正极材料Li1+δ(TMxMn1-x)1-δO2(TM为过渡金属)中,无钴Fe-Mn基富锂正极材料(1-x)Li2MnO3·xLiFeO2成为潜在的高性能、低成本锂离子电池正极材料。从材料的设计、结构、电化学性能和合成改性工艺等方面,综述(1-x)Li2MnO3·xLiFeO2的研究进展。重点讨论利用Fe3+/4+的氧化还原设计Fe-Mn基固溶体正极材料,分析晶体结构;讨论不同合成方法和包覆改性对材料倍率性能、循环性能和安全性的影响。针对亟待解决的循环寿命和首次不可逆容量大的问题进行分析和展望。  相似文献   

6.
厉运杰  赵宣  王利  陶常法 《电池》2023,(6):596-599
分析容量衰减机理,对优化电池体系十分重要。研究23 Ah方形铝壳磷酸铁锂(LiFePO4)锂离子电池高温(55℃)循环容量衰减的机理。通过SEM、X射线能量色散谱(EDS)、XRD、电感耦合等离子体发射光谱(ICP)及傅立叶变换红外光谱(FTIR),分析材料的表面形貌、晶体结构及界面组分。利用电化学微分电压曲线(DVA)及扣式半电池测试,对高温循环后的电池容量衰减机理进行量化分析。失效电池的电极活性材料,整体结构没有被破坏,正极活性物质颗粒表面出现裂纹,负极固体电解质相界面(SEI)膜增厚,有机锂化合物占比增大。DVA结果表明,可循环锂损失(LLI)和活性物质结构损失(LAM)分别占全电池容量衰减的74.82%和25.18%。扣式半电池测试结果表明,负极SEI膜和死锂、正极电解质相界面(CEI)膜、正极结构损失分别占全电池容量衰减的77.13%、1.83%和21.04%。  相似文献   

7.
周江  孟繁慧  朱莎  甄会娟  黄铃 《电源技术》2022,46(2):169-172
研究了LiCoO2正极和氧化亚硅/石墨复合负极(LiCoO2-SiO/石墨)软包锂离子电池体系(LIBs)循环衰减机理,通过循环过程中电化学阻抗(EIS)、增量容量分析(ICA)、正负极形貌等分析了循环的影响因素。结果表明,硅基负极材料在完全嵌锂状态下的体积膨胀不仅会导致SiO负极的颗粒破碎,与电解液的副反应加剧,其膨胀应力还会造成电极的导电网络和粘结剂网络的破损,从而导致正负极活性物质利用率降低,降低SiO负极材料的循环性能。此外,SiO负极的充放电电压平台较高,与石墨材料复合使用时,容易造成电池正极的过充和放电容量损失,正极过充会加剧正极材料结构破裂。而随着循环的进行,过充程度和放电容量损失会愈发严重,加速电池循环性能衰减。  相似文献   

8.
FeS2和Co S2是目前应用最广泛的热电池正极材料,当与锂合金负极材料一起使用时,单体电池的工作电压约为2 V。而高电位正极材料具有较高的电极电位,可使单体电池工作电压提高至3 V,有利于电池大功率输出。阐述了几种热电池高电位正极材料的应用和研究现状,介绍了它们的放电性能,展望了热电池高电位正极材料的发展方向。  相似文献   

9.
蔡志鹏  曾芳磊  李宁  袁宁一 《电源技术》2023,(10):1268-1272
探讨了硫正极中掺入锂离子正极材料(磷酸铁锂LiFePO4、三元材料NCM、富锂锰基材料LRMB)对锂硫电池性能的影响。研究发现,富锂锰基材料最有利于提高锂硫电池的电化学性能,并且其添加量为10%(质量分数)时,效果最好。通过一系列电化学性能测试发现,硫正极中掺杂锂离子正极材料能够调控活性硫的电化学行为,促进可溶性长链多硫化锂(Li2Sx)向难溶性短链硫化锂(Li2S)的转化,进而提高锂硫电池的电化学可逆性,降低电池的极化现象。这为提高锂硫电池的电化学性能提供了新的思路。  相似文献   

10.
何劲作  闫啸  张丽娟 《电池》2024,(2):165-169
正极电解质相界面(CEI)膜会影响锂离子电池的高温性能。商用电解液在高温下的热稳定性差,形成的CEI膜不够稳定,易导致电池失效。以热稳定性及成膜性能良好的双三氟磺酰亚胺锂(LiTFSI)和二氟草酸硼酸锂(LiODFB)为锂盐,EC+EMC(体积比3∶7)为溶剂,构建电解液体系,考察制备的LiCoO2/Li半电池的电化学性能。在70℃下,LiCoO2/Li半电池在0.5 mol/L LiTFSI+0.5 mol/L LiODFB基电解液体系下,以1.0 C在2.7~4.2 V循环,首次放电比容量为131.2 mAh/g,循环100次的容量保持率为90.8%。这得益于电解液体系生成了均匀、致密且具有良好离子电导率的CEI膜。  相似文献   

11.
高捷  韩晓刚 《电池》2023,(2):137-140
有机液态电解质具有可燃性,存在起火甚至爆炸等安全隐患,有限的电化学窗口限制了锂金属负极和高电压正极的应用。采用固态电解质代替电解液和隔膜,有望解决安全问题,更宽的电化学窗口可匹配锂金属负极和高电压正极,较大幅度地提高电池的能量密度。采用高温固相法合成具有高离子电导率(8.14×10-4 S/cm)的锂镧锆钽氧(LLZTO)固态电解质。基于LLZTO电解质组装匹配镍锰酸锂(LNMO)高电压正极的锂金属电池,以0.05 C的倍率在3.5~5.3 V充放电,能稳定循环超过50次,放电比容量保持在100~120 mAh/g之间。  相似文献   

12.
陆钧皓 《电池》2023,(2):232-236
从废旧的锂离子电池中提取有价金属并进行利用,对于环保和资源循环方面具有重要的意义。针对退役动力锂离子电池正极材料(主要成分为LiNi0.5Co0.2Mn0.3O2)进行多组分协同优先提锂工艺研究。在正极材料、NaHSO4、C、Na2SO4的质量比1.0∶0.8∶0.1∶0.8,焙烧温度600℃,焙烧时间60 min,水浸液固比25 ml∶1 g,水浸温度25℃,水浸时间40 min的条件下,用电感耦合等离子体发射光谱(ICP-OES)及XRD对溶液及滤渣中的Li、Ni、Co和Mn元素含量进行分析,得到Li元素浸出率达到99.8%,Ni、Co和Mn元素的浸出率分别为3.6%、0.5%和1.5%,优先提锂效果显著。将富锂溶液进一步制备得成Li2CO3产品,沉锂率达到90%,产品经检测,满足电池级碳酸锂行业标准。  相似文献   

13.
张港  张亦罗  曹诗雨  陈斐 《电源技术》2023,(10):1259-1262
聚合物基复合电解质(CPE)应用于全基固态锂硫电池在保证高能量密度的同时,改善了电解质与电极之间的界面接触,具有更为广阔的应用前景。但硫正极固有的绝缘性会导致较低的电子/离子传输速率,通常选用高导电性的碳材料和高离子电导率的电解质材料来改善复合硫正极的电子/离子传输速率。制备了高离子电导率的聚合物基聚氧化乙烯(PEO)-双三氟甲磺酰亚胺锂(LiTFSI)-锆酸镧锂(LLZO)复合电解质,在20和60℃下离子电导率分别为1.16×10-4和7.26×10-4S/cm,同时将其与硫-还原氧化石墨烯制备rGO-S-CPEs复合硫正极,在改善了正极中离子传输速率的同时,取代了粘结剂的作用。探究了正极材料中不同含量的复合电解质对电池性能的影响。测试结果表明,当硫正极中复合电解质含量为40%(质量分数)时,全固态锂硫电池的电化学性能最佳,在0.2 C、45℃下,首次充放电比容量为923 mAh/g,50次循环后比容量为653 mAh/g。  相似文献   

14.
锂硫聚合物二次电池不仅比能量高、成本低,而且具有良好的高温特性。介绍了复合型纳米硫正极材料、纳米储锂合金负极材料和用原位合成工艺掺入纳米二氧化硅的凝胶型聚合物电解质研制方面取得的突破性进展;所研制的复合型纳米硫正极材料,与凝胶电解质及锂金属负极配合制成扣式实验电池进行测试,重量比能量已达到700m Ah/g;采用微乳液新工艺合成的C uSn纳米合金重量比能量已经突破300m Ah/g,而石墨与金属的合金容量可达500m Ah/g以上;原位合成的纳米二氧化硅有效地降低了聚合物凝胶电解质的内阻。再用3~5年时间,可望制出以纳米锂合金为负极、纯固态聚合物为电解质和纳米硫复合材料为正极的高比能量电池。新型电池还可应用于电动汽车和各种军事用途。  相似文献   

15.
李红  徐强  余劲鹏  桑林 《电池》2012,42(3):160-163
综述了锂硫电池关键材料改性研究进展,重点对硫正极、电解质和锂负极等3个方面的改性进行了介绍,展望了锂硫电池的研究重点.  相似文献   

16.
铬氧化物既能够作为正极材料,也可作为负极材料应用于锂离子电池中。多电子反应的铬氧化物作为正极材料时具有较高的理论质量比容量和工作电压,其中Cr8O21和Cr2O5是当前研究中关注度最高的多电子反应的铬氧化物,也是非常有前景的锂电池正极材料。铬氧化物中能够用作锂电池负极材料的主要是Cr2O3,它不仅有较大的理论比容量,又有较低的放电平台,成本也相对较低。介绍了Cr8O21和Cr2O5正极材料的最新研究成果,并介绍了放电机理、制备方法、改性手段及应用,同时,比较分析了不同制备工艺下制得的样品结晶度、形貌和电化学性能。负极方面介绍了Cr2O3的电化学特性及其在电池方面的应用,综述了一些改性方法以解决材料的导电性和循环性能问题,如包覆、掺杂、纳米结构化等,这些研究成果为未来锂离子电池负极材料的选择提供了新的研究方向。  相似文献   

17.
为了改善LiB体系大容量热电池的安全性,探索性开展了热电池用正极片的稳定性研究,确定了正极片稳定性测试方法,开展了测试方法的应用评价,结果表明,正极片的稳定性测试可用于评价LiB体系大容量电池的空载安全性。为了优化大容量电池的安全性,研究了不同含量氧化镁添加剂对正极片稳定性、电池安全性和电性能的影响,结果表明,向正极D中加入5%氧化镁添加剂,既改善了电池的空载安全性,又实现了电能的高效输出,工作时间较目前通用的正极C提升了5%。  相似文献   

18.
倪祥祥  胡习之  李长玉 《电池》2023,(3):248-251
五氧化二钒(V2O5)作为正极材料,在锂离子电池中存在循环不稳定、倍率性能差等缺点,且锂化机理研究有限,作为负极材料的研究更是缺乏。采用聚乙烯醇(PVA)辅助软模板溶剂热法制备多孔性V2O5(PVO),所得PVO的结晶度高,为相互连接的V2O5纳米棒组成的多孔结构。使用PVO为负极材料制备的半电池,容量和稳定性高,倍率性能较好,在放电过程中产生了新化合物,以0.2 A/g的电流在0.02~3.10 V充放电,第500次循环的放电比容量可达762.1 mAh/g。制备的LiFePO4/PVO全电池以0.1 A/g的电流在1.5~3.5 V充放电,第100次循环的放电比容量为176.8 mAh/g。  相似文献   

19.
面向新一代小型化轻量化武器装备对热电池电源的实际需求,通过流延涂布工艺制备了正极-电解质一体化复合薄膜极片.所制备的一体化薄膜具有良好的机械强度,极片厚度仅为180 mm,远小于传统粉末压片工艺制得极片的厚度.将一体化薄膜极片与锂硼负极组装成单体电池进行放电,放电结果表明,在100 mA/cm2的电流密度下,450℃时...  相似文献   

20.
分别以LiMn2O4、LiNi0.6Co0.2Mn0.2O2和Li4Ti5O12为正负极活性物质,制备钛酸锂软包电池。研究了两种正极材料对钛酸锂电池性能的影响,结果表明正极材料的工作电位对电池大倍率放电和充电的性能有较大影响,正极材料的表面包覆有利于抑制电解液在高温55℃的分解改善电池寿命。LiMn2O4/Li4Ti5O12电池10 C放电容量达到了标称容量的95%;LiNi0.6Co0.2Mn0.2O2/Li4Ti5O12电池10 C充电恒流比达到了92%,其55℃、2 C循环1 200次后容量保持率在80.3%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号