首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper fuels, based on various DME to diesel ratios are investigated. Physical and chemical properties of DME and diesel display mutual solubility at any ratio. The vapor pressure of DME/diesel blends is lower than that of pure DME at the same temperatures and it decreases with an increase of diesel mass fraction in blends, which is beneficial to the elimination of vapor lock in the fuel supply system on CI engines. Performance, emission and other features of three kinds of DME/diesel blend fuels and diesels are evaluated in a four-cylinder test engine. By taking relative advantages of DME and diesel, the DME/diesel blends could achieve satisfactory properties in lubricity and atomization, which contributed to improvements in spray and combustion characteristics. Simultaneously, smoke emission could be reduced significantly with a little penalty on CO and HC emissions for DME/diesel blended engine at high loads, in comparison to diesel engine. NOx emissions of the engine powered by DME/diesel blends are decreased somewhat. Moreover, the power output would be improved a little and NOx emission could be reduced further if the fuel supply advance angle is retarded appropriately.  相似文献   

2.
《Fuel》2007,86(12-13):1772-1780
In this study, wasted cooking oil from restaurants was used to produce neat (pure) biodiesel through transesterification, and this converted biodiesel was then used to prepare biodiesel/diesel blends. The goal of this study was to compare the trace formation from the exhaust tail gas of a diesel engine when operated using the different fuel type: neat biodiesel, biodiesel/diesel blends, and normal diesel fuels. B20 produced the lowest CO concentration for all engine speeds. B50 produced higher CO2 than other fuels for all engine speeds, except at 2000 rpm where B20 gave the highest. The biodiesel and biodiesel/diesel blend fuels produced higher NOx for various engine speeds as expected. SO2 formation not only showed an increasing trend with increased engine speed but also showed an increasing trend as the percentage of diesel increased in the fuels. Among the collected data, the PM concentrations from B100 engines were higher than from other fuelled engines for the tested engine speed and most biodiesel-contained fuels produced higher PM than the pure diesel fuel did. Overall, we may conclude that B20 and B50 are the optimum fuel blends. The species of trace formation in the biodiesel-contained fuelled engine exhaust were mainly CnH2n+2, DEP, and DPS. For the B100, B80, B50, and D fuelled engines, C15H32 was the dominant species for all engine speeds, while squalene (C30H50) was the dominant for B20. DEP was only observed in the B100, B80, and B50 fuelled engines in this study. The D fuelled engine showed a higher DPS production for engine speeds higher than 1200 rpm.  相似文献   

3.
An alternative fuel production was performed by pyrolysis of waste vehicle tires under nitrogen (N2) environment and with calcium hydroxide (Ca(OH)2) as catalyst. The sulfur content of liquids obtained were reduced by using Ca(OH)2. The liquid fuel of waste vehicle tires(TF) was then used in a diesel engine to blend with petroleum diesel fuel by 5%(TF5), 10%(TF10), 15%(TF15), 25%(TF25), 35%(TF35), 50%(TF50), and 75%(TF75) wt. and pure (TF100). Performance characteristics such as engine power, engine torque, brake specific fuel consumption (bsfc) and exhaust temperature and emission parameters such as oxides of nitrogen (NOx), carbon monoxides (CO), total unburned hydrocarbon (HC), sulfur dioxides (SO2) and smoke opacity of the engine operation with TF and blend fuels of TF-diesel were experimentally investigated and compared with those of petroleum diesel fuel. It was concluded that the blends of pyrolysis oil of waste tires TF5, TF10, TF25 and TF35 can efficiently be used in diesel engines without any engine modifications. However, the blends of TF50, TF75 and TF100 resulted considerably to high CO, HC, SO2 and smoke emissions.  相似文献   

4.
《Fuel》2005,84(12-13):1543-1549
A blend of 20% (v/v) ethanol/methyl soyate was prepared and added to diesel fuel as an oxygenated additive at volume percent levels of 15 and 20% (denoted as BE15 and BE20). We also prepared a blend containing 20% methyl soyate in diesel fuel (denoted as B20). The fuel blends that did not have any other additive were stable for up to 3 months. Engine performance and emission characteristics of the three different fuels in a diesel engine were investigated and compared with the base diesel fuel. Observations showed that particulate matter (PM) emission decreased with increasing oxygenate content in the fuels but nitrogen oxides (NOx) emissions increased. The diesel engine fueled by BE20 emitted significantly less PM and a lower Bosch smoke number but the highest NOx among the fuel blends tested. All the oxygenate fuels produced moderately lower CO emissions relative to diesel fuel. The B20 blend emitted less total hydrocarbon (THC) emissions compared with base diesel fuel. This was opposite to the fuel blends containing ethanol (BE15, BE20), which produced much higher THC emission.  相似文献   

5.
Hu Chen  Jianxin Wang  Shijin Shuai  Wenmiao Chen 《Fuel》2008,87(15-16):3462-3468
Vegetable methyl ester was added in ethanol–diesel fuel to prevent separation of ethanol from diesel in this study. The ethanol blend proportion can be increased to 30% in volume by adding the vegetable methyl ester. Engine performance and emissions characteristics of the fuel blends were investigated on a diesel engine and compared with those of diesel fuel. Experimental results show that the torque of the engine is decreased by 6%–7% for every 10% (by volume) ethanol added to the diesel fuel without modification on the engine. Brake specific fuel consumption (BSFC) increases with the addition of oxygen from ethanol but equivalent brake specific fuel consumption (EBSFC) of oxygenated fuels is at the same level of that of diesel. Smoke and particulate matter (PM) emissions decrease significantly with the increase of oxygen content in the fuel. However, PM reduction is less significant than smoke reduction. In addition, PM components are affected by the oxygenated fuel. When blended fuels are used, nitrogen oxides (NOx) emissions are almost the same as or slightly higher than the NOx emissions when diesel fuel is used. Hydrocarbon (HC) is apparently decreased when the engine was fueled with ethanol–ester–diesel blends. Fuelling the engine with oxygenated diesel fuels showed increased carbon monoxide (CO) emissions at low and medium loads, but reduced CO emissions at high and full loads, when compared to pure diesel fuel.  相似文献   

6.
This research focuses on the use of biodiesel as an additive in diesohol preparation. Three types of biodiesel—methyl, ethyl, and butyl esters—were prepared from palm oil through transesterification using a conventional base catalyst. Ethanol is generally used to blend in diesohol; however, butanol is another alcohol which has higher solubility in diesel than ethanol and it can improve the fuel properties of the blends. Therefore, a comparative study of phase stability, the dependence of solubility on temperature (10, 20, and 30 °C), and an evaluation of some basic fuel properties according to the ASTM of diesel-biodiesel-ethanol and diesel-biodiesel-butanol three-component systems at different component concentrations was done. We found that the use of butanol in diesohol could solve the problem of fuel instability at low temperatures because of its higher solubility in diesel fuel. In addition, the fuel properties results indicated that blends containing butanol have properties closer to diesel than those of blends containing ethanol.  相似文献   

7.
Safflower seed oil was chemically treated by the transesterification reaction in methyl alcohol environment with sodium hydroxide (NaOH) to produce biodiesel. The produced biodiesel was blended with diesel fuel by 5% (B5), 20% (B20) and 50% (B50) volumetrically. Some of important physical and chemical fuel properties of blend fuels, pure biodiesel and diesel fuel were determined. Performance and emission tests were carried out on a single cylinder diesel engine to compare biodiesel blends with petroleum diesel fuel. Average performance reductions were found as 2.2%, 6.3% and 11.2% for B5, B20 and B50 fuels, respectively, in comparison to diesel fuel. These reductions are low and can be compensated by a slight increase in brake specific fuel consumption (Bsfc). For blends, Bsfcs were increased by 2.8%, 3.9% and 7.8% as average for B5, B20 and B50, respectively. Considerable reductions were recorded in PM and smoke emissions with the use of biodiesel. CO emissions also decreased for biodiesel blends while NOx and HC emissions increased. But the increases in HC emissions can be neglected as they have very low amounts for all test fuels. It can be concluded that the use of safflower oil biodiesel has beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel.  相似文献   

8.
S. Bari  M. Mohammad Esmaeil 《Fuel》2010,89(2):378-383
Using hydrogen as an additive to enhance the conventional diesel engine performance has been investigated by several researchers and the outcomes are very promising. However, the problems associated with the production and storage of pure hydrogen currently limits the application of pure hydrogen in diesel engine operation. On-board hydrogen-oxygen generator, which produces H2/O2 mixture through electrolysis of water, has significant potential to overcome these problems. This paper focuses on evaluating the performance enhancement of a conventional diesel engine through the addition of H2/O2 mixture, generated through water electrolysis. The experimental works were carried out under constant speed with varying load and amount of H2/O2 mixture. Results show that by using 4.84%, 6.06%, and 6.12% total diesel equivalent of H2/O2 mixture the brake thermal efficiency increased from 32.0% to 34.6%, 32.9% to 35.8% and 34.7% to 36.3% at 19 kW, 22 kW and 28 kW, respectively. These resulted in 15.07%, 15.16% and 14.96% fuel savings. The emissions of HC, CO2 and CO decreased, whereas the NOx emission increased.  相似文献   

9.
Results of performance, emission and tribological evaluations of palm oil methyl ester and its blends with conventional diesel in an automobile diesel engine test bed are presented. Polymerization and carbon deposits on the fuel injector were monitored. CO, CO2, O2, combustion efficiency and temperature of exhaust gases were also measured. Palm oil methyl ester and its blends have great potential as alternative diesel fuel. Performance and exhaust gas emission for palm oil methyl ester and its blends with conventional diesel are comparable with those of conventional diesel fuel. Palm oil methyl ester does not pose a severe environmental problem and will not deteriorate engine and bearing components.  相似文献   

10.
The effects of diesel oil-soybean biodiesel blends on a passenger vehicle exhaust pollutant emissions were investigated. Blends of diesel oil and soybean biodiesel with concentrations of 3% (B3), 5% (B5), 10% (B10) and 20% (B20) were used as fuels. Additionally, the effects of anhydrous ethanol as an additive to B20 fuel blend with concentrations of 2% (B20E2) and 5% (B20E5) were also studied. The emissions tests were carried out following the New European Driving Cycle (NEDC). The results showed that increasing biodiesel concentration in the fuel blend increases carbon dioxide (CO2) and oxides of nitrogen (NOX) emissions, while carbon monoxide (CO), hydrocarbons (HC) and particulate matter (PM) emissions are reduced. The addition of anhydrous ethanol to B20 fuel blend proved it can be a strategy to control exhaust NOX and global warming effects through the reduction of CO2 concentration. However, it may require fuel injection modifications, as it increases CO, HC and PM emissions.  相似文献   

11.
Yi Ren  Haiyan Miao  Yage Di  Deming Jiang  Ke Zeng  Bing Liu  Xibin Wang 《Fuel》2008,87(12):2691-2697
Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends were investigated. The results show that there exist the different behaviors in the combustion between the diesel-diglyme blends and the other five diesel-oxygenate blends as the diglyme has the higher cetane number than that of diesel fuel while the other five oxygenates have the lower cetane number than that of diesel fuel. The smoke concentration decreases regardless of the types of oxygenate additives, and the smoke decreases with the increase of the oxygen mass fraction in the blends without increasing the NOx and engine thermal efficiency. The reduction of smoke is strongly related to the oxygen-content of blends. CO and HC concentrations decrease with the increase of oxygen mass fraction in the blends. Unlike conventional diesel engines fueled with pure diesel fuel, engine operating on the diesel-oxygenate blends presents a flat NOx/Smoke tradeoff curve versus oxygen mass fraction.  相似文献   

12.
Biodiesel as a renewable alternative fuel produces lower exhaust emissions with the exception of nitrogen oxides (NOx) when compared to the conventional diesel fuel. Reducing nitrogen oxides produced from engines running on biodiesel requires proper engine controller adaptations that are linked to the specifics of the fuel blend. Therefore, online estimation of fuel blend is a critical step in allowing diesel engines to maintain performance while simultaneously meeting emission requirements when operating on biodiesel blends. Presented in this paper are three different model-based biodiesel blend estimation strategies using: (i) crankshaft torsionals, (ii) NOx emissions measurement from the exhaust stream, and (iii) oxygen content measurement of the exhaust stream using a wide-band UEGO sensor. Each approach is investigated in terms of the accuracy and robustness to sensor errors. A sensitivity analysis is conducted for each method to quantify robustness of the proposed fuel blend estimation methods.  相似文献   

13.
This paper discusses the physical-chemical properties of ethanol-diesel fuel blends. The attention is focused on the properties which influence the injection and engine characteristics significantly. Main properties have been investigated experimentally. The analysis of experimentally obtained fuel properties of tested fuels and their influence on engine characteristics are presented. Physical and chemical properties of diesel fuel and ethanol-diesel fuel blends were measured according to requirements and test methods for diesel fuel (EN590, 2003). The tested fuels were neat mineral diesel fuel (D100), 5% (v/v) ethanol/diesel fuel blend (E05D95), 10% (v/v) ethanol-diesel fuel blend (E10D90) and 15% (v/v) ethanol-diesel fuel blend (E15D85). It has been proved that, for ethanol-diesel fuel blends, some additives are necessary to keep stability under low temperature conditions. Also, cold weather properties test, such as cloud point and pour point tests are negatively affected by phase separation. The rest of the properties, excepting flash point, were within diesel fuel standard specifications. Based on this study, it can be concluded that using additives to avoid phase separation and to raise flash point, blends of diesel fuel with ethanol up to 15% can be used to fuel diesel engines if engine performance tests corroborate it.  相似文献   

14.
R.D. Misra  M.S. Murthy 《Fuel》2011,90(7):2514-2518
Soapnut (Sapindus mukorossi) oil, a nonedible straight vegetable oil was blended with petroleum diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and soapnut oil (10%, 20%, 30% and 40%) fuel blends were used to conduct short-term engine performance and emission tests at varying loads in terms of 25% load increments from no load to full loads. Tests were carried out for engine operation and engine performance parameters such as fuel consumption, brake thermal efficiency, and exhaust emissions (smoke, CO, UBHC, NOx, and O2) were recorded. Among the blends SNO 10 has shown a better performance with respect to BTE and BSEC. All blends have shown higher HC emissions after about 75% load. SNO 10 and SNO 20 showed lower CO emissions at full load. NOx emission for all blends was lower and SNO 40 blend achieved a 35% reduction in NOx emission. SNO 10% has an overall better performance with regards to both engine performance and emission characteristics.  相似文献   

15.
Important fuel properties and emission characteristics of blends (20 vol.%) of soybean oil methyl esters (SME) and partially hydrogenated SME (PHSME) in ultra low sulfur diesel fuel (ULSD) were determined and compared with neat ULSD. The following changes were observed for B20 blends of SME and PHSME versus neat ULSD: improved lubricity, higher kinematic viscosity and cetane number, lower sulfur content, and inferior low-temperature properties and oxidative stability. With respect to exhaust emissions, B20 blends of PHSME and SME exhibited lower PM and CO emissions in comparison to those of neat ULSD. The PHSME blend also showed a significant reduction in THC emissions. Both SME and PHSME B20 blends yielded small increases in NOx emissions. The reduction in double bond content of PHSME did not result in a statistically significant difference in NOx emissions versus SME at the B20 blend level. The test engine consumed a greater amount of fuel operating on the SME and PHSME blends than on neat ULSD, but the increase was smaller for the PHSME blend.  相似文献   

16.
K. Purushothaman  G. Nagarajan 《Fuel》2009,88(9):1732-4496
In the present work, the effect of using neat orange oil, optimum orange oil-diesel blend and the optimum flow rate of DEE with orange oil are evaluated for the performance, emissions and combustion characteristics of a single cylinder, diesel engine. The experimental results show that carbon monoxide (CO), hydrocarbon (HC) and smoke emissions decrease while oxides of nitrogen (NOx) emissions increase for orange oil and its blends compared to diesel fuel and DEE with orange oil. The brake thermal efficiency in the case of DEE with orange oil is higher than that of orange oil, orange oil-diesel fuel blend and diesel fuel. The peak cylinder pressure and heat release rate for DEE with orange oil are higher than those of diesel fuel operation.  相似文献   

17.
Exhaust emissions and their effects on the environment and human health, such as mutagenicity of particulate matter (PM) and ozone-forming potential, must be considered when using an alternative fuel. In the present work, a test engine and two agricultural tractors ran on rapeseed oil methyl ester (biodiesel) or conventional diesel fuel as well as blends thereof. The objective was to detect any disproportionately positive or negative effects depending on blend levels, because conventional diesel fuel and biodiesel can be blended in every ratio. Generally, emissions of regulated compounds changed linearly with the blend level. The known positive and negative effects of biodiesel varied accordingly. Overall, no optimal blend was found. Increasing biodiesel content of the fuel caused a linear increase in benzene emissions in the agricultural five-mode engine test, an effect that may be explained from previous studies on precombustion chemistry. In using the test engine, it was found that PM from biodiesel significantly reduced mutagenic potential compared with that from diesel fuel, although in this work PM masses were found to be reproducibly higher for biodiesel from rapeseed oil compared with conventional diesel fuel. Ozone precursors increased 10–30% when using biodiesel compared with conventional diesel fuel. Emissions of aldehydes and alkenes are mainly responsible for this effect. N2O emissions increased when using a catalytic converter.  相似文献   

18.
T. Daho  O. Sanogo 《Fuel》2009,88(7):1261-1268
This study characterizes combustion of blends of DFO (domestic fuel-oil) and refined cottonseed oil produced in Burkina Faso at different percentages in a non-modified DFO burner by determining its overall performance (consumption and thermal capacity) and gas emissions (CO, CO2, O2, NO, NOx, SO2). The physical and chemical characteristics of the different blends confer on each blend the status of a special fuel requiring specific adjustment of the burner. The influence of combustion parameters such as equivalence ratio and fuel pressure is studied. Results show that emissions of CO, NOx and CO2 are similar for all fuel blends at the operating point corresponding to 0.86 equivalence ratio and 20 bars fuel pressure. Whatever the fuel pressure is, SO2 emission is increasing with DFO percentage in blends.Experimental emission results obtained with suitable adjustments for a blend containing 30% cottonseed oil and 70% DFO are compared to the calculated results obtained using a combustion equation based on a global chemical mechanism. The results show that there is a satisfactory match between the calculation and experimental results.  相似文献   

19.
Gas sorption and transport properties for He, H2, O2, N2, Ar, CH4, and CO2 at 35°C near atmospheric pressure have been obtained for miscible blends of tetramethyl bisphenol-A polycarbonate (TMPC) and a random copolymer of styrene with acrylonitrile (SAN) containing 9.5% by weight of acrylonitrile. All gas permeability, diffusion, and solubility coefficients obtained are lower than that calculated from the semilogarithmic additivity rule. These results are qualitatively interpreted by ternary solution theory and activated state theory which have been proposed to describe gas sorption and diffusion in miscible blends. The negative deviation of gas permeabilities for the blends from this rule can be explained semiquantitatively by free volume theory which takes volume contraction on mixing into account. The negative deviation increases with gas molecular size which results in larger ideal gas separation factors than that calculated from the additivity rule. For He/CH4 and H2/CH4 pairs, the permselectivities for the blends are higher than that for either pure TMPC or SAN. The deviation from additivity for gas transport properties of TMPC/SAN blends is the opposite of that observed in the first paper of this series for PMMA/SAN blends. This can be attributed to the stronger interactions in TMPC/SAN blends than in PMMA/SAN blends.  相似文献   

20.
Oleander oil has been used as raw material for producing biodiesel using ultrasonic irradiation method at the frequency of 20 kHz and horn type reactor 50 watt. A two-step transesterification process was carried out for optimum condition of 0.45 v/v methanol to oil ratio, 1.2% v/v H2SO4 catalyst, 45 °C reaction temperature and 15min reaction time, followed by treatment with 0.25 v/v methanol to oil ratio, 0.75% w/v KOH alkaline catalyst, 50 °C reaction temperature and 15 min reaction time. The fuel properties of Oleander biodiesel so obtained confirmed the requirements of both the standards ASTM D6751 and EN 14214 for biodiesel. Further Oleander biodiesel-diesel blends were tested to evaluate the engine performance and emission characteristics. The performance and emission of 20% Oleander biodiesel blend (B20) gave a satisfactory result in diesel engines as the brake thermal efficiency increased 2.06% and CO and UHC emissions decreased 41.4% and 32.3% respectively, compared to mineral diesel. Comparative investigation of performance and emissions characteristics of Oleander biodiesel blends and mineral diesel showed that oleander seed is a potential source of biodiesel and blends up to 20% can be used for realizing better performance from an unmodified diesel engine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号