首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium‐ion batteries are widely considered as promising energy storage systems for large‐scale applications, but their relatively low energy density hinders further practical applications. Developing high‐voltage cathode materials is an effective approach to increase the overall energy density of sodium‐ion batteries. When cut‐off voltage is elevated over 4.3 V, however, the cathode becomes extremely unstable due to structural transformations as well as metal dissolution into the electrolytes. In this work, the cyclic stability of P2‐Na0.66(Mn0.54Co0.13Ni0.13)O2 (MCN) electrode at a cut‐off voltage of 4.5 V is successfully improved by using ultrathin metal oxide surface coatings (Al2O3, ZrO2, and TiO2) deposited by an atomic layer deposition technique. The MCN electrode coated with the Al2O3 layer exhibits higher capacity retention among the MCN electrodes. Moreover, the rate performance of the MCN electrode is greatly improved by the metal oxide coatings in the order of TiO2 < Al2O3 < ZrO2, due to increased fracture toughness and electrical conductivity of the metal oxide coating layers. A ZrO2‐coated MCN electrode shows a discharge capacity of 83 mAh g?1 at 2.4 A g?1, in comparison to 61 mAh g?1 for a pristine MCN electrode. Cyclic voltammetry and electrochemical impedance analysis disclose the reduced charge transfer resistance from 1421 to 760.2 Ω after cycles, suggesting that the metal oxide coating layer can effectively minimize the undesirable phase transition, buffer inherent stress and strain between the binder, cathode, and current collector, and avoid volumetric changes, thus increasing the cyclic stability of the MCN electrode.  相似文献   

2.
All‐solid‐state metal batteries (ASSMBs) are attracting much attention due to their cost effectiveness, enhanced safety, room‐temperature performance and high theoretical specific capacity. However, the alkali metal anodes (such as Li and Na) are active enough to react with most solid‐state electrolytes (SSEs), leading to detrimental reactions at the metal–SSE interface. In this work, a molecular layer deposition (MLD) alucone film is employed to stabilize the active Na anode/electrolyte interface in the ASSMBs, limiting the decomposition of the sulfide‐based electrolytes (Na3SbS4 and Na3PS4) and Na dendrite growth. Such a strategy effectively improves the room‐temperature full battery performance as well as cycling stability for over 475 h in Na–Na symmetric cells. The modified interface is further characterized by X‐ray photoelectron spectroscopy (XPS) depth profiling, which provides spatially resolved evidence of the synergistic effect between the dendrite‐suppressed sodiated alucone and the insulating unsodiated alucone. The coupled layers reinforce the protection of the Na metal/electrolyte interface. Therefore, alucone is identified as an effective and bifunctional coating material for the enhancement of the metal/electrolyte interfacial stability, paving the way for rapid development and wide application of high‐energy ASSMBs.  相似文献   

3.
Surface stabilization of cathode materials is urgent for guaranteeing long‐term cyclability, and is important in Na cells where a corrosive Na‐based electrolyte is used. The surface of P2‐type layered Na2/3[Ni1/3Mn2/3]O2 is modified with ionic, conducting sodium phosphate (NaPO3) nanolayers, ≈10 nm in thickness, via melt‐impregnation at 300 °C; the nanolayers are autogenously formed from the reaction of NH4H2PO4 with surface sodium residues. Although the material suffers from a large anisotropic change in the c‐axis due to transformation from the P2 to O2 phase above 4 V versus Na+/Na, the NaPO3‐coated Na2/3[Ni1/3Mn2/3]O2/hard carbon full cell exhibits excellent capacity retention for 300 cycles, with 73% retention. The surface NaPO3 nanolayers positively impact the cell performance by scavenging HF and H2O in the electrolyte, leading to less formation of byproducts on the surface of the cathodes, which lowers the cell resistance, as evidenced by X‐ray photoelectron spectroscopy and time‐of‐flight secondary‐ion mass spectroscopy. Time‐resolved in situ high‐temperature X‐ray diffraction study reveals that the NaPO3 coating layer is delayed for decomposition to Mn3O4, thereby suppressing oxygen release in the highly desodiated state, enabling delay of exothermic decomposition. The findings presented herein are applicable to the development of high‐voltage cathode materials for sodium batteries.  相似文献   

4.
Constructing high voltage (>4.5 V) cathode materials for sodium‐ion batteries has emerged in recent years to replace lithium batteries for large scale energy storage applications. Herein, an electrochemically stable Na0.66(Ni0.13Mn0.54Co0.13)O2 (Na‐NMC) buckyballs with an uniform size of 5 µm and a high tap density of 2.34 g cm?3, which exhibit excellent cyclability even at the high current with a cut‐off voltage of 4.7 V, is demonstrated. The Na‐NMC buckyballs are prepared from (Ni0.13Mn0.54Co0.13)CO3 (NMC) precursor synthesized using a facile hydrothermal method. The Na‐NMC delivers a reversible capacity of around 120 mAh g?1 between 4.7 and 2 V at 1 C rate along with an excellent cyclic stability (90%) until 150 cycles, which is one of the best outcomes among the reported P2‐type cathodes tested at the high operating voltage range. Furthermore, Na‐NMC‐180 buckyballs with a high tap density is offering an enhanced volumetric energy density, a superior rate performance and an outstanding cyclic stability. The X‐ray adsorption fine structure analysis is used to study the local electronic structure changes around the Co, Mn, and Ni after cycling process at 1 C rate. The findings open opportunities for tailoring high‐performance and high‐energy cathode materials for sodium‐ion batteries.  相似文献   

5.
An increase in the energy density of lithium‐ion batteries has long been a competitive advantage for advanced wireless devices and long‐driving electric vehicles. Li‐rich layered oxide, xLi2MnO3?(1?x)LiMn1?y?zNiyCozO2, is a promising high‐capacity cathode material for high‐energy batteries, whose capacity increases by increasing charge voltage to above 4.6 V versus Li. Li‐rich layered oxide cathode however suffers from a rapid capacity fade during the high‐voltage cycling because of instable cathode–electrolyte interface, and the occurrence of metal dissolution, particle cracking, and structural degradation, particularly, at elevated temperatures. Herein, this study reports the development of fluorinated polyimide as a novel high‐voltage binder, which mitigates the cathode degradation problems through superior binding ability to conventional polyvinylidenefluoride binder and the formation of robust surface structure at the cathode. A full‐cell consisting of fluorinated polyimide binder‐assisted Li‐rich layered oxide cathode and conventional electrolyte without any electrolyte additive exhibits significantly improved capacity retention to 89% at the 100th cycle and discharge capacity to 223–198 mA h g?1 even under the harsh condition of 55 °C and high charge voltage of 4.7 V, in contrast to a rapid performance fade of the cathode coated with polyvinylidenefluoride binder.  相似文献   

6.
The active role of alumina, pentalithium aluminate (Li5AlO4, Li-aluminate), and pentasodium aluminate (Na5AlO4, Na-aluminate) as the surface protection coatings produced via atomic layer deposition on Li and Mn-rich NCM cathode materials 0.33Li2MnO3·0.67LiNi0.4Co0.2Mn0.4O2 is discussed. A notable improvement in the electrochemical behavior of the coated cathodes has been found while tested in Li-coin cells at 30 °C. Though all the coated cathodes demonstrate enhanced electrochemical cycling and rate performances, Na-aluminate coated cathodes exhibit exemplary behavior. Prolonged cycling and rate capability testing demonstrate that after more than 400 cycles at 1 C rate, the uncoated cathode delivers only 63 mAh g−1, while those with alumina, Li-aluminate, and Na-aluminate coatings exhibit approximately two times higher specific capacities. The coated cathodes display steady average discharge potential and lower evolution of the voltage hysteresis during prolonged cycling compared to the uncoated cathode. Importantly, Na-aluminate coated cathode shows a lowering in gases (O2, CO2, H2, etc.) evolution. Post-cycling analysis of the electrodes demonstrates higher morphological integrity of the coated cathode materials and lower transition metals dissolution from them. The coatings mitigate undesirable side reactions between the electrodes and the electrolyte solution in the cells.  相似文献   

7.
Na‐ion batteries have experienced rapid development over the past decade and received significant attention from the academic and industrial communities. Although a large amount of effort has been made on material innovations, accessible design strategies on peculiar structural chemistry remain elusive. An approach to in situ construction of new Na‐based cathode materials by substitution in alkali sites is proposed to realize long‐term cycling stability and high‐energy density in low‐cost Na‐ion cathodes. A new compound, [K0.444(1)Na1.414(1)][Mn3/4Fe5/4](CN)6, is obtained through a rational control of K+ content from electrochemical reaction. Results demonstrate that the remaining K+ (≈0.444 mol per unit) in the host matrix can stabilize the intrinsic K‐based structure during reversible Na+ extraction/insertion process without the structural evolution to the Na‐based structure after cycles. Thereby, the as‐prepared cathode shows the remarkably enhanced structural stability with the capacity retention of >78% after 1800 cycles, and a higher average operation voltage of ≈3.65 V versus Na+/Na, directly contrasting the non‐alkali‐site‐substitution cathode materials. This provides new insights into alkali‐site‐substitution constructing advanced Na‐ion cathode materials.  相似文献   

8.
Aqueous zinc‐ion batteries are receiving increasing attention; however, the development of high‐voltage cathodes is limited by the narrow voltage window of conventional aqueous electrolytes. Herein, it is reported that Na3V2(PO4)2O1.6F1.4 exhibits the excellent performance, optimal to date, among polyanion cathode materials in a novel neutral water‐in‐bisalts electrolyte of 25 m ZnCl2 + 5 m NH4Cl. It delivers a reversible capacity of 155 mAh g?1 at 50 mA g?1, a high average operating potential of ≈1.46 V, and stable cyclability of 7000 cycles at 2 A g?1.  相似文献   

9.
High‐energy‐density lithium metal batteries are considered the most promising candidates for the next‐generation energy storage systems. However, conventional electrolytes used in lithium‐ion batteries can hardly meet the demand of the lithium metal batteries due to their intrinsic instability for Li metal anodes and high‐voltage cathodes. Herein, an ester‐based electrolyte with tris(trimethylsilyl)phosphate additive that can form stable solid electrolyte interphases on the anode and cathode is reported. The additive decomposes before the ester solvent and enables the formation of P‐ and Si‐rich interphases on both electrodes that are ion conductive and robust. Thus, lithium metal batteries with a high‐specific‐energy of 373 Wh kg?1 can exhibit a long lifespan of over 80 cycles under practical conditions, including a low negative/positive capacity ratio of 2.3, high areal capacity of 4.5 mAh cm?2 for cathode, high‐voltage of 4.5 V, and lean electrolyte of 2.8 µL mAh?1. A 4.5 V pouch cell is further assembled to demonstrate the practical application of the tris(trimethylsilyl)phosphate additive with an areal capacity of 10.2 and 9.4 mAh cm?2 for the anode and cathode, respectively. This work is expected to provide an effective electrolyte optimizing strategy compatible with current lithium ion battery manufacturing systems and pave the way for the next‐generation Li metal batteries with high specific energy and energy density.  相似文献   

10.
Na superionic conductor of Na3MnTi(PO4)3 only containing high earth-abundance elements is regarded as one of the most promising cathodes for the applicable Na-ion batteries due to its desirable cycling stability and high safety. However, the voltage hysteresis caused by Mn2+ ions resided in Na+ vacancies has led to significant capacity loss associated with Mn reaction centers between 2.5–4.2 V. Herein, the sodium excess strategy based on charge compensation is applied to suppress the undesirable voltage hysteresis, thereby achieving sufficient utilization of the Mn2+/Mn3+ and Mn3+/Mn4+ redox couples. These findings indicate that the sodium excess Na3.5MnTi0.5Ti0.5(PO4)3 cathode with Ti4+ reduction has a lowest Mn2+ occupation on the Na+ vacancies in its initial composition, which can improve the kinetics properties, finally contributing to a suppressed voltage hysteresis. Based on these findings, it is further applied the sodium excess route on a Mn-richer phosphate cathode, which enables the suppressed voltage hysteresis and more reversible capacity. Consequently, this developed Na3.6Mn1.15Ti0.85(PO4)3 cathode achieved a high energy density over 380 Wh kg−1 (based on active substance mass of cathode) in full-cell configurations, which is not only superior to most of the phosphate cathodes, but also delivers more application potential than the typical oxides cathodes for Na-ion batteries.  相似文献   

11.
Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (?2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g?1 at 20 mA g?1, fast rate capability of 103 mAh g?1 at 100 mA g?1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (>80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage.  相似文献   

12.
Sodium layered oxides with mixed transition metals have received significant attention as positive electrode candidates for sodium‐ion batteries because of their high reversible capacity. The phase transformations of layered compounds during electrochemical reactions are a pivotal feature for understanding the relationship between layered structures and electrochemical properties. A combination of in situ diffraction and ex situ X‐ray absorption spectroscopy reveals the phase transition mechanism for the ternary transition metal system (Fe–Mn–Co) with P2 stacking. In situ synchrotron X‐ray diffraction using a capillary‐based microbattery cell shows a structural change from P2 to O2 in P2–Na0.7Fe0.4Mn0.4Co0.2O2 at the voltage plateau above 4.1 V on desodiation. The P2 structure is restored upon subsequent sodiation. The lattice parameter c in the O2 structure decreases significantly, resulting in a volumetric contraction of the lattice toward a fully charged state. Observations on the redox behavior of each transition metal in P2–Na0.7Fe0.4Mn0.4Co0.2O2 using X‐ray absorption spectroscopy indicate that all transition metals are involved in the reduction/oxidation process.  相似文献   

13.
The development of high‐energy and high‐power density sodium‐ion batteries is a great challenge for modern electrochemistry. The main hurdle to wide acceptance of sodium‐ion batteries lies in identifying and developing suitable new electrode materials. This study presents a composition‐graded cathode with average composition Na[Ni0.61Co0.12Mn0.27]O2, which exhibits excellent performance and stability. In addition to the concentration gradients of the transition metal ions, the cathode is composed of spoke‐like nanorods assembled into a spherical superstructure. Individual nanorod particles also possess strong crystallographic texture with respect to the center of the spherical particle. Such morphology allows the spoke‐like nanorods to assemble into a compact structure that minimizes its porosity and maximizes its mechanical strength while facilitating Na+‐ion transport into the particle interior. Microcompression tests have explicitly verified the mechanical robustness of the composition‐graded cathode and single particle electrochemical measurements have demonstrated the electrochemical stability during Na+‐ion insertion and extraction at high rates. These structural and morphological features contribute to the delivery of high discharge capacities of 160 mAh (g oxide)?1 at 15 mA g?1 (0.1 C rate) and 130 mAh g?1 at 1500 mA g?1 (10 C rate). The work is a pronounced step forward in the development of new Na ion insertion cathodes with a concentration gradient.  相似文献   

14.
The development of high energy/power density sodium‐ion batteries (SIBs) is still challenged by the high redox potential of Na/Na+ and large radius of Na+ ions, thus requiring extensive further improvement to, in particular, enhance the capacity and voltage of cathode materials. Among the various types of cathodes, the polyanion cathodes have emerged as the most pragmatic option due to their outstanding thermostability, unique inductive effect, and flexible structures. In this Review, a critical overview of the design principles and engineering strategies of polyanion cathodes that could have a pivotal role in developing high energy/power density SIBs are presented. Specifically, the engineering of polyanion cathode materials for higher voltage and specific capacity to increase energy density is discussed. The way in which morphology control, architectural design, and electrode processing have been developed to increase power density for SIBs is also analyzed. Finally, the remaining challenges and the future research direction of this field are presented.  相似文献   

15.
The optical and barrier properties of thin-film encapsulations (TFEs) for top-emitting organic light-emitting diodes (TEOLEDs) were investigated using TFEs fabricated by stacking multiple sets of inorganic–organic layers. The inorganic moisture barrier layers were prepared by atomic layer deposition (ALD) of Al2O3 using trimethylaluminum (TMA) and O3 as precursors and are shown to be efficient barriers against gases and vapors. The organic alucone layers were produced by molecular layer deposition (MLD) using TMA and ethylene glycol as precursors. The [Al2O3:Alucone] ALD/MLD films were used because their adjustable inorganic–organic nanolaminate composition allows for the tuning of the optical properties, thereby enhancing their application potential for the design and fabrication of high performance light out-coupling structures for TEOLEDs. By carefully adjusting the relative thickness ratio of the inorganic–organic encapsulation materials, optimized light extraction was achieved and the films not only maintained their high moisture barrier strength but also showed excellent optical performance.  相似文献   

16.
Li‐rich–layered oxide is considered to be one of the most promising cathode materials for high‐energy lithium ion batteries. However, it suffers from poor rate capability, capacity loss, and voltage decay upon cycling that limits its utilization in practical applications. Surface properties of Li‐rich–layered oxide play a critical role in the function of batteries. Herein, a novel and successful strategy for synchronous tailoring surface structure and chemical composition of Li‐rich–layered oxide is proposed. Poor nickel content on the surface of carbonate precursor is initially prepared by a facile treatment of NH3·H2O, which can retain at a certain low amount on the surface in the final lithiated Li‐rich–layered oxide after a solid‐phase reaction process. Moreover, a phase‐gradient outer layer with “layered‐coexisting phase‐spinel” structure toward to the outside surface is self‐induced and formed synchronously based on poor nickel surface of the precursor. Electrochemical tests reveal this unique surface enables excellent cycling stability, improved rate capability, and slight voltage decay of cathodes. The finding here sheds light on a universal principle both for masterly tailoring surface structure and chemical composition at the same time for improving electrochemical performance of electrode materials.  相似文献   

17.
Poly(ethylene oxide) (PEO)‐based solid electrolytes are expected to be exploited in solid‐state batteries with high safety. Its narrow electrochemical window, however, limits the potential for high voltage and high energy density applications. Herein the electrochemical oxidation behavior of PEO and the failure mechanisms of LiCoO2‐PEO solid‐state batteries are studied. It is found that although for pure PEO it starts to oxidize at a voltage of above 3.9 V versus Li/Li+, the decomposition products have appropriate Li+ conductivity that unexpectedly form a relatively stable cathode electrolyte interphase (CEI) layer at the PEO and electrode interface. The performance degradation of the LiCoO2‐PEO battery originates from the strong oxidizing ability of LiCoO2 after delithiation at high voltages, which accelerates the decomposition of PEO and drives the self‐oxygen‐release of LiCoO2, leading to the unceasing growth of CEI and the destruction of the LiCoO2 surface. When LiCoO2 is well coated or a stable cathode LiMn0.7Fe0.3PO4 is used, a substantially improved electrochemical performance can be achieved, with 88.6% capacity retention after 50 cycles for Li1.4Al0.4Ti1.6(PO4)3 coated LiCoO2 and 90.3% capacity retention after 100 cycles for LiMn0.7Fe0.3PO4. The results suggest that, when paired with stable cathodes, the PEO‐based solid polymer electrolytes could be compatible with high voltage operation.  相似文献   

18.
Potassium ion batteries using graphite anode and high-voltage cathodes are considered to be optimizing candidates for large-scale energy storage. However, the lack of suitable electrolytes significantly hinders the development of high-voltage potassium ion batteries. Herein, a dilute (0.8 m ) fluorinated phosphate electrolyte is proposed, which exhibits extraordinary compatibility with both graphite anode and high-voltage cathodes. The phosphate solvent, tris(2,2,2-trifluoroethyl) phosphate (TFP), has weak solvating ability, which not only allows the formation of robust anion-derived solid electrolyte interphase on graphite anode but also effectively suppresses the corrosion of Al current collector at high voltage. Meanwhile, the high oxidative stability of fluorinated TFP solvent enables stable ultrahigh-voltage (4.95 V) cycling of a potassium vanadium fluorophosphate (KVPO4F) cathode. Using TFP-based electrolyte, the 4.9 V-class potassium ion full cell based on graphite anode and KVPO4F cathode shows rather remarkable cycling performance with a high capacity retention of 87.2% after 200 cycles. This study provides a route to develop dilute electrolytes for high-voltage potassium ion batteries, by utilizing solvents with both weak solvating ability and high oxidative stability.  相似文献   

19.
Li+/Na+ exchange has been extensively explored as an effective method to prepare high-performance Mn-based layered cathodes for Li-ion batteries, since the first report in 1996 by P. G. Bruce (Nature, 1996. 381, 499–500). Understanding the detailed structural changes during the ion-exchange process is crucial to implement the synthetic control of high-performance layered Mn-based cathodes, but less studied. Herein, in situ synchrotron X-ray diffraction, density functional theory calculations, and electrochemical tests are combined to conduct the systemic studies into the structural changes during the ion-exchange process of an Mn-only layered cathode O3-type Li0.67[Li0.22Mn0.78]O2 (LLMO) from the corresponding counterpart P3-type Na0.67[Li0.22Mn0.78]O2 (NLMO). The temperature-resolved observations combined with theoretical calculations reveal that the Li+/Na+ exchange is favorable thermodynamically and composited with two tandem topotactic phase transitions: 1) from NLMO to a layered intermediate through ≈60% of Li+/Na+ exchange. 2) then to the final layered product LLMO through further Li insertion. Moreover, the intermediate-dominate composite is obtained by slowing down the exchange kinetics below room temperature, showing better electrochemical performance than LLMO obtained by the traditional molten-salt method. The findings provide guides for the synthetic control of high-performance Mn-based cathodes under mild conditions.  相似文献   

20.
Zinc–air batteries deliver great potential as emerging energy storage systems but suffer from sluggish kinetics of the cathode oxygen redox reactions that render unsatisfactory cycling lifespan. The exploration on bifunctional electrocatalysts for oxygen reduction and evolution constitutes a key solution, where rational design strategies to integrate various active sites into a high‐performance air cathode remain insufficient. Herein, a multiscale construction strategy is proposed to rationally direct the fabrication of bifunctional oxygen electrocatalysts for long‐lifespan rechargeable zinc–air batteries. NiFe layered double hydroxides and cobalt coordinated framework porphyrin are selected as the active sites considering their high intrinsic activity at the molecular level, and the active sites are successively integrated on three‐dimensional conductive scaffolds at mesoscale to strengthen ion transportation. Consequently, the multiscale constructed electrocatalyst exhibits excellent bifunctional performance (ΔE = 0.68 V), which is even better than that of the noble metal based benchmarks. The corresponding air cathodes endow zinc–air batteries with a reduced voltage gap of 0.74 V, a high power density of 185.0 mW cm?2, and an ultralong lifespan of more than 2400 cycles at 5.0 mA cm?2. This work demonstrates a feasible strategy to rationally integrate various active sites to construct multifunctional electrocatalysts for energy‐related processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号