首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学工业   3篇
金属工艺   1篇
机械仪表   1篇
无线电   3篇
一般工业技术   1篇
自动化技术   1篇
  2021年   2篇
  2020年   2篇
  2017年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  1968年   1篇
排序方式: 共有10条查询结果,搜索用时 787 毫秒
1
1.
We report on the possibility of removing boron (in the form of boric acid) from water by electrochemical means. We explore capacitive de-ionization (CDI) processes in which local changes in pH near the surface of high-surface-area activated carbon fiber (ACF) electrodes during charging are utilized, in order to dissociate boric acid into borate ions which can be electro-adsorbed onto the positive electrode in the CDI cells. For this purpose, a special flow-through CDI cell was constructed in which the feed solution flows through the electrodes. Local pH changes near the carbon electrode surface were investigated using a MgCl2 solution probe in three- (with reference) and two-electrode cells, and described qualitatively. We show that, to a certain extent, boron can indeed be removed from water by CDI.  相似文献   
2.
Owing to high energy density and economic viability, rechargeable Mg batteries are considered alternatives to lithium ion batteries. However besides the chevrel phase, none of the conventional inorganic cathode materials demonstrate reversible intercalation/deintercalation of Mg+2 ions in an anhydrous electrolyte system. The lack of high voltage and high capacity cathode frustrates the realization of Mg batteries. Previous studies indicate that vanadium pentoxide (V2O5) has the potential to reversibly insert/extract Mg ions. However, many attempts to utilize V2O5 demonstrate limited electrochemical response, due to hindered Mg ion mobility in solid. Here, monodispersed spherical V2O5 with a hierarchical architecture is rationally designed, through a facile and scalable approach. The V2O5 spheres exhibit initial discharge capacity of 225 mA h g?1 which stabilizes at ≈190 mA h g?1 at 10 mA g?1, much higher than previous reports. The V2O5 spheres exhibit specific discharge capacity of 55 mA h g?1 at moderate current rate (50 mA g?1) with negligible fading after 50 cycles (≈5%) and 100 cycle (≈13%), while it retains ≈95% columbic efficiency after 100 cycles demonstrating excellent stability during Mg+2 ion intercalation/deintercalation. Most interestingly, exact phase and morphology are completely retained even after repeated Mg+2 ion intercalation/deintercalation at different current rates, demonstrating pronounced electrochemical activity in an anhydrous magnesium electrolyte.  相似文献   
3.
The International Journal of Advanced Manufacturing Technology - Research and development of polyetheretherketone (PEEK) composites with high thermal conductivities and ideal thermal stabilities...  相似文献   
4.
The active role of alumina, pentalithium aluminate (Li5AlO4, Li-aluminate), and pentasodium aluminate (Na5AlO4, Na-aluminate) as the surface protection coatings produced via atomic layer deposition on Li and Mn-rich NCM cathode materials 0.33Li2MnO3·0.67LiNi0.4Co0.2Mn0.4O2 is discussed. A notable improvement in the electrochemical behavior of the coated cathodes has been found while tested in Li-coin cells at 30 °C. Though all the coated cathodes demonstrate enhanced electrochemical cycling and rate performances, Na-aluminate coated cathodes exhibit exemplary behavior. Prolonged cycling and rate capability testing demonstrate that after more than 400 cycles at 1 C rate, the uncoated cathode delivers only 63 mAh g−1, while those with alumina, Li-aluminate, and Na-aluminate coatings exhibit approximately two times higher specific capacities. The coated cathodes display steady average discharge potential and lower evolution of the voltage hysteresis during prolonged cycling compared to the uncoated cathode. Importantly, Na-aluminate coated cathode shows a lowering in gases (O2, CO2, H2, etc.) evolution. Post-cycling analysis of the electrodes demonstrates higher morphological integrity of the coated cathode materials and lower transition metals dissolution from them. The coatings mitigate undesirable side reactions between the electrodes and the electrolyte solution in the cells.  相似文献   
5.
6.
In previous papers we reported on attempts to improve the performance of water desalination using capacitive de-ionization (CDI) processes by understanding the ions transport and adsorption/desorption behavior of activated carbon electrodes as a function of the applied potential. We also investigated the charge efficiency in CDI processes of brackish water in symmetrical cells containing identical highly porous activated carbon electrodes. In this work, we study the influence of oxygen-containing surface groups on activated carbon electrodes on the adsorption/desorption behavior of ions in brackish water. A special methodology was developed in order to estimate the charge efficiency of CDI processes which include the ability to prepare various kinds of activated carbon electrodes (ACEs) with controlled porosity and surface groups, measuring the PZC (potential of zero charge) of ACE in solutions and simultaneous adsorption and desorption of ions into/from them. The presence of polar, oxygen containing surface groups on ACE does not affect the electroadsorption behavior of Na+ and Cl ions into porous carbons whose average pore size is greater than 0.58 nm, apart of considerably changing the PZC. This results in a shift of the entire curves of ion adsorption vs. potential. The possible use of ACE with oxidized surfaces in CDI processes is discussed.  相似文献   
7.
MXenes are a large class of 2D materials that consist of few-atoms-thick layers of transition metal carbides, nitrides, or carbonitrides. The surface functionalization of MXenes has immense implications for their physical, chemical, and electronic properties. However, solution-phase surface functionalization often leads to structural degradation of the MXene electrodes. Here, a non-conventional, single-step atomic surface reduction (ASR) technique is adopted for the surface functionalization of MXene (Ti3C2Tx) in an atomic layer deposition reactor using trimethyl aluminum as a volatile reducing precursor. The chemical nature of the modified surface is characterized by X-ray photoelectron spectroscopy and nuclear magnetic resonance techniques. The electrochemical properties of the surface-modified MXene are evaluated in acidic and neutral aqueous electrolyte solutions, as well as in conventional Li-ion and Na-ion organic electrolytes. A considerable improvement in electrochemical performance is obtained for the treated electrodes in all the examined electrolyte solutions, expressed in superior rate capability and cycling stability compared to those of the non-treated MXene films. This improved electrochemical performance is attributed to the increased interlayer spacing and modified surface terminations after the ASR process.  相似文献   
8.
A straightforward method is presented for characterizing the quality of carbon nanotube (CNT) dispersions using scanning electron microscopy (SEM) imaging of samples prepared using a unique procedure, which successfully prevents re-coagulation of the CNTs during the evaporation of the dispersant. The images obtained more accurately reflect the status of the bulk dispersion in the liquid state. This method can be used to comparatively analyze the degree of disaggregation and the extent of tube breakage following a dispersion protocol in either aqueous or non-aqueous solutions, with or without surfactants, and regardless of the original condition of the CNTs.  相似文献   
9.
In this paper, we investigate the composition of cheap network storage resources to meet specific availability and capacity requirements. We show that the problem of finding the optimal composition for availability and price requirements can be reduced to the knapsack problem, and propose three techniques for efficiently finding approximate solutions. The first algorithm uses a dynamic programming approach to find mirrored storage resources for high availability requirements, and runs in the pseudo-polynomial O(n 2 c) time where n is the number of sellers’ resources to choose from and c is a capacity function of the requested and minimum availability. The second technique is a heuristic which finds resources to be agglomerated into a larger coherent resource, with complexity of O(nlog?n). The third technique finds a compromise between capacity and availability (which in our phrasing is a complex integer programming problem) using a genetic algorithm. The algorithms can be implemented on a broker that intermediates between buyers and sellers of storage resources. Finally, we show that a broker in an open storage market, using the combination of the three algorithms can more frequently meet user requests and lower the cost of requests that are met compared to a broker that simply matches single resources to requests.  相似文献   
10.
One of the great challenges in condensed matter physics has been to produce metallic hydrogen (MH) in the laboratory. There are two approaches: solid molecular hydrogen can be compressed to high density at extreme pressures of order 5–6 megabars. The transition to MH should take place at low temperatures and is expected to occur as a structural first-order phase transition with dissociation of molecules into atoms, rather than the closing of a gap. A second approach is to produce dense molecular hydrogen at pressures of order 1–2 megabars and heat the sample. With increasing temperature, it was predicted that molecular hydrogen first melts and then dissociates to atomic metallic liquid hydrogen as a first-order phase transition. We have observed this liquid–liquid phase transition to metallic hydrogen, also called the plasma phase transition. In low-temperature studies, we have pressurized HD to over 3 megabars and observed two new phases. Molecular hydrogen has been pressurized to 4.2 megabars. A new phase transition has been observed at 3.55 megabars, but it is not yet metallic.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号