首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2D planar structures of nonlayered wide‐bandgap semiconductors enable distinguished electronic properties, desirable short wavelength emission, and facile construction of 2D heterojunction without lattice match. However, the growth of ultrathin 2D nonlayered materials is limited by their strong covalent bonded nature. Herein, the synthesis of ultrathin 2D nonlayered CuBr nanosheets with a thickness of about 0.91 nm and an edge size of 45 µm via a controllable self‐confined chemical vapor deposition method is described. The enhanced spin‐triplet exciton (Zf, 2.98 eV) luminescence and polarization‐enhanced second‐harmonic generation based on the 2D CuBr flakes demonstrate the potential of short‐wavelength luminescent applications. Solar‐blind and self‐driven ultraviolet (UV) photodetectors based on the as‐synthesized 2D CuBr flakes exhibit a high photoresponsivity of 3.17 A W?1, an external quantum efficiency of 1126%, and a detectivity (D*) of 1.4 × 1011 Jones, accompanied by a fast rise time of 32 ms and a decay time of 48 ms. The unique nonlayered structure and novel optical properties of the 2D CuBr flakes, together with their controllable growth, make them a highly promising candidate for future applications in short‐wavelength light‐emitting devices, nonlinear optical devices, and UV photodetectors.  相似文献   

2.
Recently, organometal halide perovskite‐based optoelectronics, particularly lasers, have attracted intensive attentions because of its outstanding spectral coherence, low threshold, and wideband tunability. In this work, high‐quality CH3NH3PbBr3 single crystals with a unique shape of cube‐corner pyramids are synthesized on mica substrates using chemical vapor deposition method. These micropyramids naturally form cube‐corner cavities, which are eminent candidates for small‐sized resonators and retroreflectors. The as‐grown perovskites show strong emission ≈530 nm in the vertical direction at room temperature. A special Fabry–Pérot (F–P) mode is employed to interpret the light confinement in the cavity. Lasing from the perovskite pyramids is observed from 80 to 200 K, with threshold ranging from ≈92 µJ cm?2 to 2.2 mJ cm?2, yielding a characteristic temperature of T0 = 35 K. By coating a thin layer of Ag film, the threshold is reduced from ≈92 to 26 µJ cm?2, which is accompanied by room temperature lasing with a threshold of ≈75 µJ cm?2. This work advocates the prospect of shape‐engineered perovskite crystals toward developing micro‐sized optoelectronic devices and potentially investigating light–matter coupling in quantum optics.  相似文献   

3.
At the heart of electrically driven semiconductors lasers lies their gain medium that typically comprises epitaxially grown double heterostuctures or multiple quantum wells. The simultaneous spatial confinement of charge carriers and photons afforded by the smaller bandgaps and higher refractive index of the active layers as compared to the cladding layers in these structures is essential for the optical‐gain enhancement favorable for device operation. Emulating these inorganic gain media, superb properties of highly stable low‐threshold (as low as ≈8 µJ cm?2) linearly polarized lasing from solution‐processed Ruddlesden–Popper (RP) perovskite microplatelets are realized. Detailed investigations using microarea transient spectroscopies together with finite‐difference time‐domain simulations validate that the mixed lower‐dimensional RP perovskites (functioning as cladding layers) within the microplatelets provide both enhanced exciton and photon confinement for the higher‐dimensional RP perovskites (functioning as the active gain media). Furthermore, structure–lasing‐threshold relationship (i.e., correlating the content of lower‐dimensional RP perovskites in a single microplatelet) vital for design and performance optimization is established. Dual‐wavelength lasing from these quasi‐2D RP perovskite microplatelets can also be achieved. These unique properties distinguish RP perovskite microplatelets as a new family of self‐assembled multilayer planar waveguide gain media favorable for developing efficient lasers.  相似文献   

4.
3D organic–inorganic hybrid perovskites have featured high gain coefficients through the electron–hole plasma stimulated emission mechanism, while their 2D counterparts of Ruddlesden–Popper perovskites (RPPs) exhibit strongly bound electron–hole pairs (excitons) at room temperature. High‐performance solar cells and light‐emitting diodes (LEDs) are reported based on 2D RPPs, whereas light‐amplification devices remain largely unexplored. Here, it is demonstrated that ultrafast energy transfer along cascade quantum well (QW) structures in 2D RPPs concentrates photogenerated carriers on the lowest‐bandgap QW state, at which population inversion can be readily established enabling room‐temperature amplified spontaneous emission and lasing. Gain coefficients measured for 2D RPP thin‐films (≈100 nm in thickness) are found about at least four times larger than those for their 3D counterparts. High‐density large‐area microring arrays of 2D RPPs are fabricated as whispering‐gallery‐mode lasers, which exhibit high quality factor (Q ≈ 2600), identical optical modes, and similarly low lasing thresholds, allowing them to be ignited simultaneously as a laser array. The findings reveal that 2D RPPs are excellent solution‐processed gain materials potentially for achieving electrically driven lasers and ideally for on‐chip integration of nanophotonics.  相似文献   

5.
Colloidal semiconductor nanoplatelets (NPLs) offer important benefits in nanocrystal optoelectronics with their unique excitonic properties. For NPLs, colloidal atomic layer deposition (c‐ALD) provides the ability to produce their core/shell heterostructures. However, as c‐ALD takes place at room temperature, this technique allows for only limited stability and low quantum yield. Here, highly stable, near‐unity efficiency CdSe/ZnS NPLs are shown using hot‐injection (HI) shell growth performed at 573 K, enabling routinely reproducible quantum yields up to 98%. These CdSe/ZnS HI‐shell hetero‐NPLs fully recover their initial photoluminescence (PL) intensity in solution after a heating cycle from 300 to 525 K under inert gas atmosphere, and their solid films exhibit 100% recovery of their initial PL intensity after a heating cycle up to 400 K under ambient atmosphere, by far outperforming the control group of c‐ALD shell‐coated CdSe/ZnS NPLs, which can sustain only 20% of their PL. In optical gain measurements, these core/HI‐shell NPLs exhibit ultralow gain thresholds reaching ≈7 µJ cm?2. Despite being annealed at 500 K, these ZnS‐HI‐shell NPLs possess low gain thresholds as small as 25 µJ cm?2. These findings indicate that the proposed 573 K HI‐shell‐grown CdSe/ZnS NPLs hold great promise for extraordinarily high performance in nanocrystal optoelectronics.  相似文献   

6.
Enormous advancement has been achieved in the field of one‐dimensional (1D) semiconductor light‐emitting devices (LEDs), however, LEDs based on 1D CdS nanostructures have been rarely reported. The fabrication of CdS@SiO2 core–shell nanorod array LEDs based on a Au–SiO2–CdS metal–insulator–semiconductor (MIS) structure is presented. The MIS LEDs exhibit strong yellow emission with a low threshold voltage of 2.7 V. Electroluminescence with a broad emission ranging from 450 nm to 800 nm and a shoulder peak at 700 nm is observed, which is related to the defects and surface states of the CdS nanorods. The influence of the SiO2 shell thickness on the electroluminescence intensity is systematically investigated. The devices have a high light‐emitting spatial resolution of 1.5 μm and maintain an excellent emission property even after shelving at room temperature for at least three months. Moreover, the fabrication process is simple and cost effective and the MIS device could be fabricated on a flexible substrate, which holds great potential for application as a flexible light source. This prototype is expected to open up a new route towards the development of large‐scale light‐emitting devices with excellent attributes, such as high resolution, low cost, and good stability.  相似文献   

7.
Lanthanide (Ln3+)‐based ultraviolet B (UVB) microlasers are highly desirable for diagnostics and phototherapy. Despite their progress, the potential applications of UVB microlasers are strongly hindered by their low optical gain, weak light confinements, and poor device repeatability. Herein, a novel all‐in‐one approach to solve the above limitations and realize mass‐manufactural UVB microlasers is reported. The gain coefficient at 289 nm is improved from two aspects, i.e., the enhanced absorption via LiYbF4:Tm(1mol%)@LiYbF4@LiLuF4 core–shell–shell nanocrystals and the suppression of competitive ultraviolet emissions. Consequently, by spin‐coating the solution onto a patterned SiO2 substrate, high‐quality Ln3+‐based microdisks are formed by self‐assembly on each SiO2 pillar and UVB whispering‐gallery‐mode lasers are realized. The resulted lasing threshold is an order of magnitude smaller than the shortest deep‐ultraviolet emission at 310.5 nm. Importantly, the lasing wavelengths and mode numbers of UVB lasers are highly controllable and repeatable, making them suitable for mass production for the first time.  相似文献   

8.
A stretchable, flexible, and bendable random laser system capable of lasing in a wide range of spectrum will have many potential applications in next‐ generation technologies, such as visible‐spectrum communication, superbright solid‐state lighting, biomedical studies, fluorescence, etc. However, producing an appropriate cavity for such a wide spectral range remains a challenge owing to the rigidity of the resonator for the generation of coherent loops. 2D materials with wrinkled structures exhibit superior advantages of high stretchability and a suitable matrix for photon trapping in between the hill and valley geometries compared to their flat counterparts. Here, the intriguing functionalities of wrinkled reduced graphene oxide, single‐layer graphene, and few‐layer hexagonal boron nitride, respectively, are utilized to design highly stretchable and wearable random laser devices with ultralow threshold. Using methyl‐ammonium lead bromide perovskite nanocrystals (PNC) to illustrate the working principle, the lasing threshold is found to be ≈10 µJ cm?2, about two times less than the lowest value ever reported. In addition to PNC, it is demonstrated that the output lasing wavelength can be tuned using different active materials such as semiconductor quantum dots. Thus, this study is very useful for the future development of high‐performance wearable optoelectronic devices.  相似文献   

9.
Large‐scale 2D single‐crystalline copper nanoplates (Cu NPLs) are synthesized by a simple hydrothermal method. The combination of a mild reductant, stabilizer, and shape modifier allows the dimensional control of the Cu nanocrystals from 1D nanowires (NWs) to 2D nanoplates. High‐resolution transmission electron microscopy (HR‐TEM) reveals that the prepared Cu NPLs have a single‐crystalline structure. From the X‐ray photoelectron spectroscopy (XPS) analysis, it is found that iodine plays an important role in the modification of the copper nanocrystals through the formation of an adlayer on the basal plane of the nanoplates. Cu NPLs with an average edge length of 10 μm are successfully synthesized, and these Cu NPLs are the largest copper 2D crystals synthesized by a solution‐based process so far. The application of the metallic 2D crystals as a semitransparent electrode proves their feasibility as a conductive filler, exhibiting very low sheet resistance (0.4 Ω ??1) compared to Cu NWs and a transmittance near 75%. The efficient charge transport is due to the increased contact area between each Cu NPL, i.e., so‐called plane contact (2D electrical contact). In addition, this type of contact enhances the current‐carrying capability of the Cu NPL electrodes, implying that the large‐size Cu NPLs are promising conductive fillers for printable electrode applications.  相似文献   

10.
Due to the novel physical properties, high flexibility, and strong compatibility with Si‐based electronic techniques, 2D nonlayered structures have become one of the hottest topics. However, the realization of 2D structures from nonlayered crystals is still a critical challenge, which requires breaking the bulk crystal symmetry and guaranteeing the highly anisotropic crystal growth. CdTe owns a typical wurtzite crystal structure, which hinders the 2D anisotropic growth of hexagonal‐symmetry CdTe. Here, for the first time, the 2D anisotropic growth of ultrathin nonlayered CdTe as thin as 4.8 nm via an effective van der Waals epitaxy method is demonstrated. The anisotropic ratio exceeds 103. Highly crystalline nanosheets with uniform thickness and large lateral dimensions are obtained. The in situ fabricated ultrathin 2D CdTe photodetector shows ultralow dark current (≈100 fA), as well as high detectivity, stable photoswitching, and fast photoresponse speed (τrising = 18.4 ms, τdecay = 14.7 ms). Besides, benefitting from its 2D planar geometry, CdTe nanosheet exhibits high compatibility with flexible substrates and traditional microfabrication techniques, indicating its significant potential in the applications of flexible electronic and optoelectronic devices.  相似文献   

11.
CsPbBr3 shows great potential in laser applications due to its superior optoelectronic characteristics. The growth of CsPbBr3 wire arrays with well‐controlled sizes and locations is beneficial for cost‐effective and largely scalable integration into on‐chip devices. Besides, dynamic modulation of perovskite lasers is vital for practical applications. Here, monocrystalline CsPbBr3 microwire (MW) arrays with tunable widths, lengths, and locations are successfully synthesized. These MWs could serve as high‐quality whispering‐gallery‐mode lasers with high quality factors (>1500), low thresholds (<3 µJ cm?2), and long stability (>2 h). An increase of the width results in an increase of the laser quality and the resonant mode number. The dynamic modulation of lasing modes is achieved by a piezoelectric polarization‐induced refractive index change. Single‐mode lasing can be obtained by applying strain to CsPbBr3 MWs with widths between 2.3 and 3.5 µm, and the mode positions can be modulated dynamically up to ≈9 nm by changing the applied strain. Piezoelectric‐induced dynamic modulation of single‐mode lasing is convenient and repeatable. This method opens new horizons in understanding and utilizing the piezoelectric properties of lead halide perovskites in lasing applications and shows potential in other applications, such as on‐chip strain sensing.  相似文献   

12.
Core–shell CdSe/CdS nanocrystals are a very promising material for light emitting applications. Their solution‐phase synthesis is based on surface‐stabilizing ligands that make them soluble in organic solvents, like toluene or chloroform. However, solubility of these materials in water provides many advantages, such as additional process routes and easier handling. So far, solubilization of CdSe/CdS nanocrystals in water that avoids detrimental effects on the luminescent properties poses a major challenge. This work demonstrates how core–shell CdSe/CdS quantum dot‐in‐rods can be transferred into water using a ligand exchange method employing mercaptopropionic acid (MPA). Key to maintaining the light‐emitting properties is an enlarged CdS rod diameter, which prevents potential surface defects formed during the ligand exchange from affecting the photophysics of the dot‐in‐rods. Films made from water‐soluble dot‐in‐rods show amplified spontaneous emission (ASE) with a similar threshold (130 μJ/cm2) as the pristine material (115 μJ/cm2). To demonstrate feasibility for lasing applications, self‐assembled microlasers are fabricated via the “coffee‐ring effect” that display single‐mode operation and a very low threshold of ~10 μJ/cm2. The performance of these microlasers is enhanced by the small size of MPA ligands, enabling a high packing density of the dot‐in‐rods.  相似文献   

13.
Lead Iodide (PbI2) is a layered semiconductor with direct band gap holding great promises in green light emission and detection devices. Recently, PbI2 planar lasers are demonstrated using hexagonal whispering‐gallery‐mode microcavities, but the lasing threshold is quite high. In this work, lasing from vapor phase deposition derived PbI2 trapezoidal nanoplatelets (NPs) with threshold that is at least an order of magnitude lower than the previous value is reported. The growth mechanism of the trapezoidal NPs is explored and attributed to the synergistic effects of van der Waals interactions and lattice mismatching. The lasing is enabled by the population inversion of n = 1 excitons and the optical feedback is provided by the Fabry–Pérot oscillation between the side facets of trapezoidal NPs. The findings not only advance the understanding of growth and photophysics mechanism of PbI2 nanostructures but also provide ideas to develop low threshold ultrathin lasers.  相似文献   

14.
Silicene has recently received increasing interest due to its unique properties. However, the synthesis of silicene remains challenging, which limits its wide applications. In this work, a top‐down lithiation and delithiation process is developed to prepare few layer silicene‐like nanosheets from ball‐milled silicon nanopowders. It is found that delithiation solvent plays a critical role in the structure evolution of the final products. The use of isopropyl alcohol renders 2D silicene‐like products 30–100 nm in length and ≈2.4 nm in thickness. The electrochemical characterization analysis suggests that the product shows high performance for rechargeable Li–O2 batteries with 73% energy efficiency and high stability. The top‐down synthesis strategy proposed in this work not only provides a new solution to the challenging preparation issue of few layer silicene but also demonstrates the feasibility of producing 2D materials from nonlayered starting structures.  相似文献   

15.
2D Ruddlesden–Popper perovskites (RPPs) have aroused growing attention in light harvesting and emission applications owing to their high environmental stability. Recently, coherent light emission of RPPs was reported, however mostly from inhomologous thin films that involve cascade intercompositional energy transfer. Lasing and fundamental understanding of intrinsic laser dynamics in homologous RPPs free from intercompositional energy transfer is still inadequate. Herein, the lasing and loss mechanisms of homologous 2D (BA)2(MA)n?1PbnI3n+1 RPP thin flakes mechanically exfoliated from the bulk crystal are reported. Multicolor lasing is achieved from the large‐n RPPs (n ≥ 3) in the spectral range of 620–680 nm but not from small‐n RPPs (n ≤ 2) even down to 78 K. With decreasing n, the lasing threshold increases significantly and the characteristic temperature decreases as 49, 25, and 20 K for n = 5, 4, and 3, respectively. The n‐engineered lasing behaviors are attributed to the stronger Auger recombination and exciton–phonon interaction as a result of the enhanced quantum confinement in the smaller‐n perovskites. These results not only advance the fundamental understanding of loss mechanisms in both inhomologous and homologous RPP lasers but also provide insights into developing low‐threshold, substrate‐free, and multicolor 2D semiconductor microlasers.  相似文献   

16.
The semiconductor exciton–polariton, arising from the strong coupling between excitons and confined cavity photon modes, is not only of fundamental importance in macroscopic quantum effects but also has wide application prospects in ultralow‐threshold polariton lasers, slowing‐light devices, and quantum light sources. Very recently, metallic halide perovskites have been considered as a great candidate for exciton–polariton devices owing to their low‐cost fabrication, large exciton oscillator strength, and binding energy. Herein, the latest progress in exciton–polaritons and polariton lasers of perovskites are reviewed. Polaritons in planar and nanowires Fabry–Pérot microcavities are discussed with particular reference to material and photophysics. Finally, a perspective on the remaining challenges in perovskite polaritons research is given.  相似文献   

17.
Combining with layered thin crystalline films, graphene has expanded its application scope beyond the regime where a gapless semimetal cannot serve. Here, we report the modulation of tunneling characteristics in graphene/hexagonal boron nitride (hBN) vertical heterostructure at different interlayer hBN thickness. These results signify an upshift in threshold voltages with hBN layer thickness. Furthermore, the gate‐dependent tunneling characteristics of the device has been demonstrated. The back‐gate voltages are used to adjust the fermi level of bottom graphene layer, which in turns tune the threshold voltages and tunneling current through ultrathin hBN layer. Our findings offer an effective tool to modulate the tunneling characteristics of vertical transistors for their potential applications in high frequency logic and tunnel devices.
  相似文献   

18.
The mechanism of lasing in single cadmium sulfide (CdS) nanowire cavities was elucidated by temperature-dependent and time-resolved photoluminescence (PL) measurements. Temperature-dependent PL studies reveal rich spectral features and show that an exciton-exciton interaction is critical to lasing up to 75 K, while an exciton-phonon process dominates at higher temperatures. These measurements together with temperature and intensity dependent lifetime and threshold studies show that lasing is due to formation of excitons and, moreover, have implications for the design of efficient, low threshold nanowire lasers.  相似文献   

19.
Cesium lead halide (CsPbX3) perovskite has emerged as a promising low‐threshold multicolor laser material; however, realizing wavelength‐tunable lasing output from a single CsPbX3 nanostructure is still constrained by integrating different composition. Here, the direct synthesis of composition‐graded CsPbBrxI3?x nanowires (NWs) is reported through vapor‐phase epitaxial growth on mica. The graded composition along the NW, with an increased Br/I from the center to the ends, comes from desynchronized deposition of cesium lead halides and temperature‐controlled anion‐exchange reaction. The graded composition results in varied bandgaps along the NW, which induce a blueshifted emission from the center to the ends. As an efficient gain media, the nanowire exerts position‐dependent lasing performance, with a different color at the ends and center respectively above the threshold. Meanwhile, dual‐color lasing with a wavelength separation of 35 nm is activated simultaneously at a site with an intermediate composition. This position‐dependent dual‐color lasing from a single nanowire makes these metal halide perovskites promising for applications in nanoscale optical devices.  相似文献   

20.
Defect engineering in 2D phosphorene samples is becoming an important and powerful technique to alter their properties, enabling new optoelectronic applications, particularly at the infrared wavelength region. Defect engineering in a few‐layer phosphorene sample via introduction of substrate trapping centers is realized. In a three‐layer (3L) phosphorene sample, a strong photoluminescence (PL) emission peak from localized excitons at ≈1430 nm is observed, a much lower energy level than free excitonic emissions. An activation energy of ≈77 meV for the localized excitons is determined in temperature‐dependent PL measurements. The relatively high activation energy supports the strong stability of the localized excitons even at elevated temperature. The quantum efficiency of localized exciton emission in 3L phosphorene is measured to be approximately three times higher than that of free excitons. These results could enable exciting applications in infrared optoelectronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号