首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
新型洁净型煤的工业燃烧及对大气环境质量的影响   总被引:1,自引:0,他引:1  
在型煤工业生产线上生产了200t新型洁净工业型煤,并在工业链条炉上进行了原煤和型煤的对比燃烧试验。结果表明:燃烧新型洁净型煤较燃烧原煤可以降低SO2和TSP的排放,提高锅炉热效率,同时对排放的可吸入尘的分析可吉,燃烧型煤可降低烟尘中有机碳和无机碳的排放量,改善大气环境质量。  相似文献   

2.
简要地介绍了煤与环境保护的关系,较系统地阐述固硫洁净型煤的工艺和技术。通过实验室试验和中试2个阶段的大量试验,该固硫洁净型煤技术固硫效果显著能有效控制和降低燃烧煤中的硫对大气的污染。  相似文献   

3.
针对型煤燃烧特点,研究开发了SZHX系列型煤锅炉.阐述了型煤锅炉的结构设计及计算要点.实测及运行经验表明,此系列型煤锅炉具有洁净燃烧、高效节能、符合环保要求、经久耐用等优点.  相似文献   

4.
实验对比研究了烟煤块状半焦及烟煤型煤等煤炭燃料在民用解耦炉中燃烧时的污染物排放特性和炊事能力,并基于解耦测试炉对烟煤型煤的特征尺寸进行优化,验证了解耦炉具对不同种类民用煤炭燃料的适应性。结果表明,民用解耦燃煤炉具特有的结构特征和通风方式有利于NOx和CO的同时减排。若在解耦炉中燃烧烟煤洁净型煤,可进一步实现对SO2和颗粒物(PM)的有效控制。型煤尺寸对炉具污染物排放影响显著,尺寸优化后的烟煤洁净型煤在解耦炉中稳定燃烧时NO, SO2, CO和PM的平均排放浓度按基准氧含量9vol%折算后,分别低于190, 300, 380和30 mg/m3,炊事功率可达1.65 kW。  相似文献   

5.
经质量检验及燃烧试验证明 ,固硫防水锅炉型煤具有优良的综合性能 ,是一项投资少、见效快、可解决煤的高效洁净燃烧并改善环境空气质量及节约能源的有效实用技术。  相似文献   

6.
概括论述了我国民用煤的来源和现状,分析了民用煤不同煤种和形态的特点,讨论了不同燃烧方式的原理及污染排放情况;根据研究现状重点分析了关于民用煤的洁净化利用方法,针对民用煤的燃前加工、燃烧技术和燃后处理三方面论述,做到从源头治理,提高过程效率,有效处理烟气污染,提出了我国民用煤洁净化利用的建议和思路:研究型煤固硫机理和影响因素,开发高固硫率型煤,研制成本低、机械性能好、适用性强的生物质型煤,推广型煤替代散煤;开发高效、洁净、低成本民用灶具,提高民用煤热效率,实现洁净燃烧;实现燃煤烟气处理系统的民用化。  相似文献   

7.
选择典型晋城无烟煤和榆林半焦为原料,通过热重法研究原料在不同掺混比下的燃烧特性,制得洁净民用型煤并进行性能评价,得到型煤的燃烧特性及污染物排放规律.结果表明:随着半焦添加比例(质量分数)的增加,型煤抗压强度逐渐下降,热稳定性基本没有变化;随着半焦的加入,型煤的残炭率下降,排放出的NO_x降低;半焦型煤NO_x排放比无烟煤型煤NOx排放减少65.6%,但CO排放为无烟煤型煤CO排放的2倍;当半焦含量为60%时,型煤燃烧时间最长.  相似文献   

8.
为考察不同燃料在小区域供暖炉具中的NO_x排放特性,分别以原煤和洁净型煤为燃料进行了燃烧试验;结果表明,相比燃用原煤,洁净型煤可以降低NO_x排放33%,实现炉内降氮的目的;单个洁净型煤在层燃炉具燃烧中经历了动力燃烧、过渡燃烧、扩散燃烧、燃尽等4个过程,在燃烧中通过贫氧气氛抑制、还原性气体和焦炭还原等过程降低NO_x,具有自还原NO_x的作用。  相似文献   

9.
关于中国洁净煤技术发展的若干思考   总被引:3,自引:0,他引:3  
中国发展洁净煤技术应覆盖煤炭开发利用的全过程,针对多终端用户,优选实用的 先进技术。中国的洁净煤技术是以提高煤炭利用效率,减少污染为目标,以煤炭洗选为源头,以煤炭气化为先导,以煤炭高效洁净燃烧和洁净煤发电为核心的技术体系,框架包括4个领域共12个方面:煤炭加工(选煤、型煤、水煤浆);煤炭高效洁净燃烧(流化床燃烧,高效低污染粉煤燃烧,燃煤联合循环发电);煤炭转化(气化,液化,燃料电池);污染控制(烟  相似文献   

10.
从洁净型煤的原料煤出发,分析了晋城无烟末煤的煤质、供应稳定性、运距及用户反映情况等;利用晋城无烟末煤制备的洁净型煤燃烧性能、排放性能均满足环保要求,机械性能也适合长距离运输,是当前洁净煤市场中最适合大面积推广的燃料,也是京津冀和山东等地政府的主推品种;认为晋城无烟末煤是制备洁净型煤的优质原料。  相似文献   

11.
12.
Vismiones and ferruginins, representatives of a new class of lypophilic anthranoids from the genusVismia were found to inhibit feeding in larvae of species ofSpodoptera, Heliothis, and inLocusta migratoria.  相似文献   

13.
Despite its industrial importance, the subject of freeze-thaw (F/T) stability of latex coatings has not been studied extensively. There is also a lack of fundamental understanding about the process and the mechanisms through which a coating becomes destabilized. High pressure (2100 bar) freezing fixes the state of water-suspended particles of polymer binder and inorganic pigments without the growth of ice crystals during freezing that produce artifacts in direct imaging scanning electron microscopy (SEM) of fracture surfaces of frozen coatings. We show that by incorporating copolymerizable functional monomers, it is possible to achieve F/T stability in polymer latexes and in low-VOC paints, as judged by the microstructures revealed by the cryogenic SEM technique. Particle coalescence as well as pigment segregation in F/T unstable systems are visualized. In order to achieve F/T stability in paints, latex particles must not flocculate and should provide protection to inorganic pigment and extender particles. Because of the unique capabilities of the cryogenic SEM, we are able to separate the effects of freezing and thawing, and study the influence of the rate of freezing and thawing on F/T stability. Destabilization can be caused by either freezing or thawing. A slow freezing process is more detrimental to F/T stability than a fast freezing process; the latter actually preserves suspension stability during freezing. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, October 27–29, 2004 in Chicago, IL. Tied for first place in The John A. Gordon Best Paper Competition.  相似文献   

14.
In 2002–2004, we examined the flight responses of 49 species of native and exotic bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) to traps baited with ethanol and/or (−)-α-pinene in the southeastern US. Eight field trials were conducted in mature pine stands in Alabama, Florida, Georgia, North Carolina, and South Carolina. Funnel traps baited with ethanol lures (release rate, about 0.6 g/day at 25–28°C) were attractive to ten species of ambrosia beetles (Ambrosiodmus tachygraphus, Anisandrus sayi, Dryoxylon onoharaensum, Monarthrum mali, Xyleborinus saxesenii, Xyleborus affinis, Xyleborus ferrugineus, Xylosandrus compactus, Xylosandrus crassiusculus, and Xylosandrus germanus) and two species of bark beetles (Cryptocarenus heveae and Hypothenemus sp.). Traps baited with (−)-α-pinene lures (release rate, 2–6 g/day at 25–28°C) were attractive to five bark beetle species (Dendroctonus terebrans, Hylastes porculus, Hylastes salebrosus, Hylastes tenuis, and Ips grandicollis) and one platypodid ambrosia beetle species (Myoplatypus flavicornis). Ethanol enhanced responses of some species (Xyleborus pubescens, H. porculus, H. salebrosus, H. tenuis, and Pityophthorus cariniceps) to traps baited with (−)-α-pinene in some locations. (−)-α-Pinene interrupted the response of some ambrosia beetle species to traps baited with ethanol, but only the response of D. onoharaensum was interrupted consistently at most locations. Of 23 species of ambrosia beetles captured in our field trials, nine were exotic and accounted for 70–97% of total catches of ambrosia beetles. Our results provide support for the continued use of separate traps baited with ethanol alone and ethanol with (−)-α-pinene to detect and monitor common bark and ambrosia beetles from the southeastern region of the US.  相似文献   

15.
It is well established that a wide range of drugs of abuse acutely boost the signaling of the sympathetic nervous system and the hypothalamic–pituitary–adrenal (HPA) axis, where norepinephrine and epinephrine are major output molecules. This stimulatory effect is accompanied by such symptoms as elevated heart rate and blood pressure, more rapid breathing, increased body temperature and sweating, and pupillary dilation, as well as the intoxicating or euphoric subjective properties of the drug. While many drugs of abuse are thought to achieve their intoxicating effects by modulating the monoaminergic neurotransmitter systems (i.e., serotonin, norepinephrine, dopamine) by binding to these receptors or otherwise affecting their synaptic signaling, this paper puts forth the hypothesis that many of these drugs are actually acutely converted to catecholamines (dopamine, norepinephrine, epinephrine) in vivo, in addition to transformation to their known metabolites. In this manner, a range of stimulants, opioids, and psychedelics (as well as alcohol) may partially achieve their intoxicating properties, as well as side effects, due to this putative transformation to catecholamines. If this hypothesis is correct, it would alter our understanding of the basic biosynthetic pathways for generating these important signaling molecules, while also modifying our view of the neural substrates underlying substance abuse and dependence, including psychological stress-induced relapse. Importantly, there is a direct way to test the overarching hypothesis: administer (either centrally or peripherally) stable isotope versions of these drugs to model organisms such as rodents (or even to humans) and then use liquid chromatography-mass spectrometry to determine if the labeled drug is converted to labeled catecholamines in brain, blood plasma, or urine samples.  相似文献   

16.
17.
18.
19.
20.
Glycidyl carbamate chemistry combines the excellent properties of polyurethanes with the crosslinking chemistry of epoxy resins. Glycidyl carbamate functional oligomers were synthesized by the reaction of polyfunctional isocyanate oligomers and glycidol. The oligomers were formulated into coatings with several amine functional crosslinkers at varying stoichiometric ratios and cured at different temperatures. Properties such as solvent resistance, hardness, and impact resistance were dependent on the composition and cure conditions. Most coatings had an excellent combination of properties. Studies were carried out to determine the kinetics of the curing reaction of the glycidyl carbamate functional oligomers with multifunctional and model amines. Detailed kinetic analysis of the curing reactions was also undertaken. The results indicated that the glycidyl carbamate functional group is more reactive than a glycidyl ether group. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, on October 27–29, 2004, in Chicago, IL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号