首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 935 毫秒
1.
采用双相区保温—淬火—配分工艺对低碳硅锰钢进行热处理,通过扫描电镜、X射线衍射仪和拉伸试验等,研究了不同淬火温度对QP钢组织及力学性能的影响。结果表明:当淬火温度为220℃时,试验用钢综合力学性能最佳,抗拉强度达到1 400 MPa,延伸率为13.3%,强塑积达到18 620 MPa·%,随着淬火温度的升高,试验用钢的抗拉强度呈逐渐降低的趋势,塑性有所增大,室温组织中板条马氏体含量逐渐减少,碳化物颗粒逐渐增多,出现少量块状马氏体组织;双相区Mn元素向奥氏体的扩散补充了QP过程中碳配分的不足,最终室温残余奥氏体由两部分组成:一是少量富碳的残余奥氏体,另一部分则是经碳配分的富锰残余奥氏体,而淬火温度220℃的选取最为合理,为试验用钢提供了较好的塑性。  相似文献   

2.
基于热镀锌的工艺特点制定Q/P热处理工艺,研究了奥氏体化温度及配分时间对组织和性能的影响。结果表明,随奥氏体化温度从800升至900℃,Q/P处理后组织中铁素体量减少,马氏体和残余奥氏体量增加,钢的屈服强度、抗拉强度均升高,伸长率降低,900℃奥氏体化时钢的强塑积最高。在460℃配分10、30、60s时,随着配分时间延长,组织中马氏体发生回火且发生大量贝氏体转变,造成Q/P处理后残余奥氏体量减少,使钢的抗拉强度、伸长率和强塑积均下降。  相似文献   

3.
以C-Si-Mn系TRIP钢成分为基础,设计了四种不同Si和Mn含量的合金成分,并采用不同两相区奥氏体化温度的淬火—配分(QP)工艺进行处理,得到了兼具高强度和高塑性的QP钢。其中,当奥氏体化温度为820℃时,0.18C-1.8Si-2.2Mn(质量分数,%)钢和0.18C-1.8Si-2.5Mn钢在抗拉强度达到1 000 MPa以上的同时断后延伸率仍不低于20%,显示了极佳的强塑性结合。利用SEM和XRD等对热处理材料的显微组织进行了表征,结果显示,其显微组织为铁素体、板条马氏体和一定量的残余奥氏体,残余奥氏体多呈块状且被铁素体所包围,且奥氏体化温度为820℃时,材料中的残余奥氏体含量和平均碳浓度均较高。更多且稳定的残余奥氏体在变形过程中发生TRIP效应,可以在不显著降低材料强度的情况下更有效地改善材料的塑性,这也是四种试验用钢经820℃的QP工艺处理后显示出更佳强塑性结合的主要原因。  相似文献   

4.
采用SEM、TEM、EPMA、XRD、室温拉伸等实验手段,对两相区保温-贝氏体区淬火配分(IQPB)工艺下不同淬火碳配分温度和时间热处理后的组织和性能进行研究。结果表明,实验用钢经IQPB工艺处理后,室温组织主要由铁素体+贝氏体+残余奥氏体组成。两相区保温后,C、Mn元素在马氏体(原奥氏体)中富集,其含量分别为基体平均值的1.47倍和1.16倍。随淬火配分温度降低,贝氏体体积分数增加,组织细化,马氏体/奥氏体小岛数量增多。随着配分温度升高及配分时间增加,实验钢室温组织中残余奥氏体含量增加,抗拉强度降低,断后伸长率提高,加工硬化行为持续发生。综合不同配分温度和时间,400℃淬火进行10min配分处理时,抗拉强度达1 107MPa,伸长率达24%,此时强塑积可达26 568MPa·%。  相似文献   

5.
《特殊钢》2020,(5)
为研究QP(淬火-分配)钢临界区均热工艺对配分过程中渗碳体析出的影响,通过Avrami动力学方程对QP钢渗碳体析出的PTT(沉淀量-温度-时间)曲线进行了计算。通过热膨胀仪对QP钢进行了单相区退火、临界区退火,退火后淬火,并通过透射电镜检测室温下马氏体的衍射斑,计算马氏体的碳含量,以此推测高温下奥氏体中的碳含量。通过连续退火模拟机模拟了不同临界区退火的QP工艺。在扫描电镜下检测了析出渗碳体的尺寸,结合热处理工艺和渗碳体的熟化率计算了析出开始时间。由此得出了渗碳体析出体积分数5%的PTT曲线绝对位置。846℃均热的条件下鼻子点温度为300℃。811℃均热条件下,鼻子点温度上升至325℃,764℃均热条件下,鼻子点温度上升至400℃。在746~846℃均热,配分时间≤450 s的情况下,可以避免渗碳体的析出。  相似文献   

6.
TRIP钢中残余奥氏体及其稳定性的研究   总被引:10,自引:0,他引:10  
江海涛  唐荻  刘强  刘仁东  严玲 《钢铁》2007,42(8):60-63,82
采用扫描电镜、透射电镜、X射线衍射仪等对贝氏体等温转变后TRIP钢中的残余奥氏体及其稳定性进行了研究.结果表明,TRIP钢在贝氏体转变区400~440 ℃保温120~300 s,随着等温温度的升高和保温时间的延长,钢中残余奥氏体的含量不断增多,残余奥氏体碳含量呈降低趋势.TRIP钢中的残余奥氏体主要以薄膜状、粗大块状和细小粒状的形态存在.粗大块状的残余奥氏体稳定性最差,薄膜状次之,细小粒状最稳定.残余奥氏体的含量不足,或残余奥氏体的含量偏高造成碳含量的不足,都会导致TRIP钢综合成形性能的降低.此外,贝氏体等温处理时间过长,渗碳体的出现大大降低了残余奥氏体中的碳含量,从而降低了残余奥氏体的稳定性.  相似文献   

7.
对成分为0.24%C-1.5%Si-2.0%Mn-0.16%V的冷轧试验钢,经780℃两相区退火后进行350~480℃不同温度下等温淬火和380℃等温60~1 200 s不同时间热处理对比试验,结合力学性能、显微组织、XRD分析,研究了热处理工艺对试验钢组织和性能的影响。结果表明,试验钢在780℃两相区退火180 s后,经380℃等温淬火处理360 s,可获得抗拉强度1 029 MPa、强塑积20.1 GPa·%、加工硬化指数0.22的良好综合性能。提高或降低等温温度均使其强度升高,延伸率降低;而延长等温时间至1 200 s,其强度及延伸率变化不大,但出现明显屈服平台。等温淬火温度及时间对残余奥氏体体积分数具有重要影响,在350~410℃范围内提高等温淬火温度,碳原子扩散能力提高,使残余奥氏体含量从2.58%增大到3.86%;而更高的等温淬火温度下,由于马氏体相变被抑制,发生贝氏体相变,残余奥氏体迅速下降;等温淬火时间超过180 s完成碳原子向奥氏体扩散富集,使其残余奥氏体稳定在3.5%左右。  相似文献   

8.
研究了0.15C-Mn-Si-Cr低碳低合金钢在Ms点以下不同温度预淬火-碳分配工艺(QP工艺)及贝氏体转变对钢组织与性能影响。结果表明,实验钢经QP处理后获得贝氏体/马氏体复相组织,与淬火回火钢相比能获得更多的残余奥氏体量,随着淬火碳分配温度的升高,钢中残余奥氏体量增加,等温温度超过310℃后,钢中析出碳化物,残余奥氏体量减少。在250℃预淬火温度等温碳分配淬火,钢的冲击韧性显著高于传统的淬火回火钢。  相似文献   

9.
通过实验室模拟热处理的方法对TRIP780钢组织与力学性能进行了研究。结果表明:随着钢带运行速度的增加,多边形铁素体体积分数降低,铁素体平均晶粒尺寸增加,贝氏体含量增加。组织中残余奥氏体含量大体呈增长的趋势,残余奥氏体中碳含量基本呈下降的趋势。钢板的抗拉强度逐渐增加,屈服强度和屈强比都是先减小后增大。随着两相区退火温度的提高,铁素体含量逐渐减少,贝氏体的含量逐渐增加,粗大的再结晶铁素体也逐渐被细小的次生铁素体所取代,残余奥氏体量和残奥中的碳含量先随着加热温度的升高而降低,达到一个低谷以后,再随加热温度的升高而增加,抗拉强度、屈服强度和屈强比规律性不是很强。  相似文献   

10.
朱帅  康永林  邝霜  姜英花 《钢铁》2014,49(6):69-73
 Q&P(Quenching and Partitioning, 淬火配分)工艺在CCE条件下,通过采用[Ms]和[Mf]点之间的最佳淬火温度和低于[Ms]点的配分温度,避免配分阶段的贝氏体形成最终可以得到最高含量的残余奥氏体组织。但试验中得到不足体积分数8%的残余奥氏体含量限制了钢塑性的提高。通过提出淬火-贝氏体区配分工艺,并应用在(0.21~0.29)C-(1.5~2.0)Si-(1.5~2.1)Mn成分钢,得到了体积分数12%左右的残余奥氏体含量和25%左右的伸长率,同时强度保持在1 000~1 100 MPa,强塑积最高达到36.6 GPa·%。不同的淬火温度和配分温度试验结果表明,工艺变化对强度影响较低,伸长率和强塑积随着配分温度的提高而提高,其中270 ℃的淬火温度试样的提高幅度高于245 ℃淬火试样,采用Q&PB工艺得到了无碳贝氏体+马氏体+残余奥氏体的三相组织。淬火和贝氏体区配分得到了优异的强度和塑性的结合,为新一代汽车用钢的发展提供新的思路。  相似文献   

11.
通过ART(奥氏体逆相变)热处理工艺,研究了两相区退火温度对0.1C-5Mn钢中残余奥氏体与力学性能的影响。采用SEM、XRD、室温拉伸等分析测试手段,表征了试验钢组织形貌、亚稳奥氏体含量以及力学性能。结果表明,试验钢经ART工艺处理后,室温组织主要由铁素体与残余奥氏体组成;随退火温度升高,试验钢中出现碳化物析出与再溶解,同时板条状形变马氏体回复多边化形成等轴铁素体,颗粒状奥氏体过冷转变为板条状和块状马氏体;630、645、660℃退火1h试样中奥氏体体积分数相近,分别为18.4%、19.5%、18.8%,随温度升高,奥氏体含量骤降,大量逆相变奥氏体转变为马氏体;综合不同退火温度,表明试验钢经660℃退火可获得最佳的综合力学性能。  相似文献   

12.
用连续退火模拟机研究了850℃奥氏体化时间(30~100 s)对1 mm厚DP780冷轧双相钢板(%:0.15C、1.80Mn、0.08Ti、0.04Al)组织和力学性能的影响。结果表明,当奥氏体化温度为850℃,以24℃/s冷却至460℃停留12 s,再以7℃/s冷却至室温的情况下,通过改变奥氏体化时间,可改变钢中马氏体含量和钢的抗拉强度。当奥氏体化时间较短时,马氏体呈带状连续分布,当奥氏体化时间较长时,马氏体带状连续性减弱;当奥氏体化时间在30、45、100 s时,该双相钢马氏体含量分别为13.7%、21.6%和15.6%,抗拉强度分别为800、840、805MPa。  相似文献   

13.
基于一种低碳硅锰系成分,结合热轧直接淬火配分工艺,开发了一种厚规格热轧直接淬火配分钢,研究了配分过程对实验钢微观组织,力学性能和冲击韧性的影响.用SEM、XRD、TEM分析观察材料的微观组织.研究结果显示,实验钢抗拉强度为1 080~1 400 MPa,屈强比为0.6~0.79,强塑积高达28 000 MPa%.等温配分钢的低温冲击韧性较动态配分钢更好,并且随着冲击温度的降低,等温配分钢冲击功比动态配分钢下降更慢.实验钢残余奥氏体含量(体积分数)为16%-28%,碳质量分数为1.05%-1.35%.同时等温配分钢较动态配分钢具有更高的残余奥氏体含量和更低的残余奥氏体碳含量.  相似文献   

14.
含钛中锰钢淬火-配分组织及力学性能   总被引:1,自引:1,他引:0  
邓杰  宋新莉  孙新军  贾涓  梁小凯  范丽霞 《钢铁》2021,56(6):103-111
 为了研究淬火-配分含钛中锰钢的组织与力学性能,借助扫描电子显微镜,透射电子显微镜、电子背散射衍射技术与万能拉伸试验机、磨粒磨损试验机等,分析与测试了含钛中锰钢在165~240 ℃淬火380 ℃配分处理后组织、强度、塑性与磨粒磨损性能。结果表明,试验钢淬火-配分组织主要为板条状一次马氏体、块状二次马氏体及残余奥氏体,同时含有大量微米级TiN和纳米级(Ti,Mo)C及TiN-(Ti,Mo)C复合析出相。190 ℃淬火380 ℃配分后残余奥氏体体积分数最高为12.5%。试验钢不同温度淬火与配分后屈服强度均大于1 000 MPa,抗拉强度均大于1 500 MPa,硬度从482.5HV增大到542.2HV,伸长率范围为9.2%~14.5%,在165~190 ℃淬火-配分处理后其抗磨粒磨损性能优于220~240 ℃淬火-配分钢。磨损机制主要是塑性变形和疲劳破坏,磨损过程中残余奥氏体发生应变诱导马氏体相变(TRIP)效应,析出相颗粒阻断基体塑性变形过程犁沟的前进和刮削行为,含钛中锰钢通过淬火-配分引入一定体积分数的残余奥氏体,有利于提高钢的强塑性与抗磨损性能。结合力学性能指标,含钛中锰钢最佳淬火-配分工艺为900 ℃奥氏体化30 min,190 ℃淬火,380 ℃配分10 min。  相似文献   

15.
淬火和低温处理对X30CrMoN151组织性能影响   总被引:1,自引:1,他引:0  
 为了探索X30 CrMoN 15 1高氮马氏体钢的最佳淬火+低温处理工艺,利用OM、XRD、SEM、EDS和EBSD等方法研究了不同淬火温度和低温处理对高氮钢显微组织和性能的影响规律。结果表明,当奥氏体化温度低于1 050 ℃,原奥氏体晶粒长大缓慢,当奥氏体化温度高于1 050 ℃后晶粒长大加剧。随着奥氏体化温度的升高,碳化物溶解加剧,油淬后的残余奥氏体呈线性升高;低温处理后残余奥氏体大幅度减少,奥氏体化温度越高冷处理后残余奥氏体下降越多。钢的硬度随淬火温度先升高后降低,在1 000 ℃硬度最高;低温处理后,硬度随淬火温度先升高后降低,在1 030 ℃硬度最高。钢的冲击韧性随淬火温度先升高后降低,在1 030 ℃时冲击韧性最佳;低温处理后,钢的冲击韧性大幅度下降。  相似文献   

16.
基于合金减量化原则,热轧后采用以超快冷技术为核心的两相区弛豫-淬火配分(F-QP)工艺技术,借助OM、SEM、TEM、XRD和室温拉伸等试验手段,研究了配分时间对试验钢组织性能的影响。研究表明:随着配分时间延长,铁素体体积分数逐渐增加,残余奥氏体含量先增加后降低,马氏体的体积分数逐渐减小;抗拉强度降低,伸长率增加,强塑积增加,屈强比较低为0.55~0.60,n值较高为0.14~0.18。配分时间对各相的体积分数、形貌、分布和析出行为有影响。30 s配分的试验钢,组织中较多的细长条马氏体、细小铁素体和薄片状残余奥氏体提高了材料的位错密度和均匀变形能力,表现出最优的综合性能。  相似文献   

17.
采用应力松弛法研究了不同奥氏体变形温度下Ti-V复合微合金钢沉淀析出的析出-温度-时间曲线(PTT曲线),并利用OM、TEM、Vickers硬度计等手段研究了奥氏体变形温度对Ti-V复合微合金钢微观组织、析出相及硬度的影响。结果表明,奥氏体中沉淀析出的PTT曲线总体呈典型的“C”曲线形状,最快析出鼻子点温度为960~980 ℃,对应的第二相粒子最快析出开始时间和结束时间分别为2.2 s和131.4 s;原始奥氏体晶粒尺寸随着变形温度的升高整体呈先减小后增大的趋势,且在1 000 ℃左右晶粒最细小(102 μm),该温度与PTT曲线的鼻子点温度相近,在鼻子点温度附近变形有利于细化原奥晶粒;析出相随着温度的升高逐渐增大,而粒子数目稍有减少;不同的奥氏体变形温度对硬度影响较小,HV硬度基本都处在360±12。   相似文献   

18.
贝氏体区等温时间对低硅TRIP钢组织和力学性能的影响   总被引:1,自引:0,他引:1  
研究了0.15C-1.5Mn-1.5Al-0.3Si TRIP钢820℃2 min加热后快冷至450℃盐浴中保温5~300s空冷的组织和力学性能。结果表明,随在贝氏体转变区450℃等温时间的增加,该钢的屈服强度和伸长率增加,抗拉强度降低,等温时间60s时强塑积最佳,为23 000MPa%;等温时间≤60s时随等温时间增加钢中残余奥氏体含量增加,>60s时随等温时间的增加钢中残余奥氏体含量降低,60s时钢中残余奥氏体达到最高值,为14%。  相似文献   

19.
采用盐浴热处理方法配合性能检测及显微组织分析方法研究了热处理工艺对含钒冷轧TRIP钢组织性能的影响,结果表明试验钢在所采用的热处理工艺下其抗拉强度均达到700 MPa,且在780℃×60 s+400℃×180 s工艺下获得最佳综合性能,屈服强度、抗拉强度、断后伸长率、强塑积分别为514 MPa、738 MPa、29%、21 402 MPa·%;随着两相区退火温度的升高,两相区奥氏体所占的体积分数也越高,使最终组织中贝氏体及马氏体等强化相含量增多,造成试验钢强度上升、塑性下降;钒在试验钢中对残余奥氏体的积极作用并未体现,可能与退火时间较短和贝氏体区等温时钒碳(氮)化物重新析出消耗残余奥氏体中碳原子造成其含量及稳定性下降有关。  相似文献   

20.
采用淬火热膨胀仪、扫描电镜、透射电镜、X射线衍射和拉伸试验机对0.2C-5Mn TRIP钢临界区相变行为、微观组织及力学性能进行了研究,并运用Factsage软件对0.2C-5Mn TRIP钢在临界区的相变热力学进行了计算,在此基础上讨论了临界区相变过程的特点。研究结果表明,临界区逆转奥氏体含量随着临界退火温度的升高而逐渐增加,逆转奥氏体中碳含量先增加后减少,Mn含量逐渐下降,逆转奥氏体热稳定性也逐渐下降。当临界退火温度为700℃时,在冷却过程中发生明显的马氏体相变;随着临界退火温度增加,渗碳体逐渐溶解,但由于相变时间较短,渗碳体无法完全溶解;当临界退火温度为600~675℃时,临界退火后的微观组织由铁素体、渗碳体和残余奥氏体构成。当临界退火温度为700℃时,临界退火后的组织由铁素体、残余奥氏体、马氏体以及少量未溶解的渗碳体构成;随着临界退火温度的升高,实验钢的工程应力-应变曲线变化显著,在675℃退火3min后获得最佳的力学性能,抗拉强度为1 138MPa,断后伸长率为23%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号