首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current-voltage characteristic (CVC) of a break junction made from polycrystalline Bi1.8Pb0.3Sr1.9Ca2Cu3Ox is investigated. The experimental CVC has a hysteretic feature that reflects part of the curve with a negative differential resistance. The CVC is discussed within the framework of the Kümmel-Gunsenheimer-Nicolsky theory that takes into account multiple Andreev reflections in superconductor/normalmetal/superconductor junctions.  相似文献   

2.
The magnetoelectric (ME) effect in two- and three-layered composites made up of polarized ceramic plates of lead zirconate-titanate PbZr0.53Ti0.47O3 (PZT) and manganese-zinc ferrite Mn0.4Zn0.6Fe2O4 (MZF) has been studied. Dependences of the transverse ME voltage coefficient (α31) on the magnetostrictive layer thickness and the magnetic field intensity and frequency have been established. The mechanical coupling coefficient of the composite plates has been estimated. Results obtained for two-layered PZT-MZF structures have been analyzed using the method of efficient medium parameters.  相似文献   

3.
The thermodynamic database of the ZrO2-Gd2O3-Y2O3-Al2O3 system is up-dated taking into account new data on lattice stabilities of ZrO2, Gd2O3 and Y2O3 and heat capacity measurements for the monoclinic phase Gd4Al2O9 and phase with garnet structure Gd3Al5O12. New data for the heat capacities of Gd2Zr2O7 (pyrochlore) and GdAlO3 (perovskite) as well as on the enthalpy of formation of fluorite solid solutions (Zr1−x Gd x )O2−x/2 were found to be in good agreement with calculated results. In comparison with the previous assessment, taking into account new experimental data resulted in a change of the melting character of the Gd4Al2O9 phase from a peritectic one to a congruent one in the Gd2O3-Al2O3 system. Correspondently, in the ternary system ZrO2-Gd2O3-Al2O3, the melting character of the three-phase assemblage Gd2O3 (B), Gd4Al2O9 and GdAlO3 changed from eutectic to transition type U. The T 0-lines for T/M and F/T diffusionless transformations and driving force of partitioning to equilibrium assemblage T + F were calculated in the ZrO2-Gd2O3-Y2O3 system.  相似文献   

4.
The corrosion behavior of an amorphous Co69Fe4.5Ni1.5Si10B15 alloy ribbon was examined as a function of solution temperature (15 °C to 55 °C) and pH (3 to 11). The results of potentiodynamic polarization tests in H2SO4 solution, NaCl solution, and HCl + NaOH solution at various levels of pH showed that the corrosion resistance for the alloy ribbon significantly deteriorated with increasing temperature and decreasing pH for given conditions. The Co69Fe4.5Ni1.5Si10B15 alloy was actively dissolved in solutions at pH 3 to 9 but passivated in a solution at pH 11. By comparison of the corrosion behaviors of Co69Fe4.5(Nb,Cr,Ni)1.5Si10B15 alloys in the solution at pH 11, Ni was considered to contribute less in improving the corrosion resistance of the alloy than did Cr and Nb.  相似文献   

5.
Nanostructured Bi2Se3 and Sn0.5-Bi2Se3 were successfully synthesized by hydrothermal coreduction from SnCl2·H2O and the oxides of Bi and Se. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM). Bi2Se3 powders obtained at 180°C and 150°C consist of hexagonal flakes of 50–150 nm in side length and nanorods of 30–100 nm in diameter and more than 1 μm in length. The product obtained at 120°C is composed of thin irregular nanosheets with a size of 100–200 nm and several nanometers in thickness. The major phase of Sn0.5-Bi2Se3 synthesized at 180°C is similar to that of Bi2Se3. Sn0.5-Bi2Se3 powders are primarily nanorod structures, but small amount of powders demonstrate irregular morphologies.  相似文献   

6.
The effects of ZnO-B2O3 (ZB2) on the sintering behavior and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics were investigated.The densities of the specimens reached the maximum value by adding 3 wt.% ZB2 and then decreased.The sintering temperature of the specimens was lowered from 1300 to 1100°C without degradation of the microwave dielectric properties.The (Ca0.254Li0.19Sm0.14)TiO3 + 3 wt.% ZB2 sintered at 1100°C for 3 h showed good microwave dielectric properties,εr = 108.2,Qf = 6545 GHz,and τf = 6.5 ppm/°C,respectively,indicating that ZB2 was an effective sintering aid to improve the densification and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics.  相似文献   

7.
By using the CALPHAD technique, an assessment of the binary PrCl3-CaCl2 and NdCl3-CaCl2 systems have been carried out. From measured phase equilibrium data and experimental integral properties, the PrCl3-CaCl2 and NdCl3-CaCl2 phase diagrams were optimized and calculated. A set of thermodynamic functions has been optimized based on an interactive computer-assisted analysis. The calculated results by present method agree well with the experimental data.  相似文献   

8.
Li1.3Al0.3Ti1.7(PO4)3 pellets sintered with different mole fractions of LiBO2 were prepared by sol-gel method. The structural identification, surface morphology, ionic conductivity, and activation energy of the pellets were studied by X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy. The results show that all the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered with different mole fractions of LiBO2 have similar X-ray diffraction patterns. The sintered pellet becomes denser and the boundary and corner of the particles become illegible with the increase of LiBO2. Among the Li1.3Al0.3Ti1.7(PO3)4 pellets sintered with different mole fractions of LiBO2, the one sintered with 1 mol% LiBO2 shows the highest ionic conductivity of 3.95×10−4 S.cm−1 and the lowest activation energy of 0.2469 eV.  相似文献   

9.
The ternary system of silver, lithium, and rubidium nitrates has been studied. Five vertical sections were established: AgNO3-Li0.5Rb0.5NO3; Li0.5Rb0.5NO3-Ag0.5Rb0.5NO3; 20 mol% AgNO3; 80 mol% AgNO3; and the section 5 mol% LiNO3. Ten invariant points were found. A schematic representation of ternary equilibria is given. The three binary systems are also reported.  相似文献   

10.
Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 was prepared by wet chemical route. The phase, surface morphology, and electrochemical properties of the prepared powders were characterized by X-ray diffraction, scanning electron micrograph, and galvanostatic charge-discharge experiments. Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 has similar X-ray diffraction patterns as LiMn2O4. The corner and border of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 particles are not as clear as the uncoated one. The two powders show similar values of lithium-ion diffusion coefficient. When cycled at room temperature and 55°C for 40 times at the charge-discharge rate of 0.2C, Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 shows the capacity retentions of 98.2% and 93.9%, respectively, which are considerably higher than the values of 85.4% and 79.1% for the uncoated one. Both the capacity retention differences between Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 and LiMn2O4 cycling at room temperature and 55°C become larger with the increase of charge-discharge rate. When the charge-discharge rate reaches 2C, the capacity retention of LATP-coated LiMn2O4 becomes 8.4% higher than the uncoated LiMn2O4 for room temperature cycling, and it becomes 11.1% higher than the latter when cycled at 55°C.  相似文献   

11.
The process of the nanocrystallization of magnetically soft Fe72.5Cu1Nb2Mo1.5Si14B9 alloy has been studied using dilatometry and thermomagnetic analysis, together with structural investigations. It has been shown that the amount of nanocrystalline phase precipitated upon heating of the amorphous precursor is in good agreement with a shortening of the ribbon length in the course of crystallization. Thermal expansion at the different stages of heating and cooling depends on the structural and phase states, as well as on the magnetic state of the alloy. The numerical value of the coefficient of linear thermal expansion decreases with an increase in the fraction of the ferromagnetic crystalline phase.  相似文献   

12.
A new ternary compound La8Al13Sn3 was synthesized and studied by means of X-ray powder diffraction technique. The compound La8Al13Sn3 crystallizes in a hexagonal AlB2-type structure with space group P6/mmm (No. 191) and the lattice parameters a = 0.44919(1) nm and c = 0.43835(1) nm. The Smith and Snyder figure of merit for index, F N , is F 30 = 197.3(30). The Rietveld refinement for the crystal structure of the compound was carried out successfully. The liability R-factors of Rietveld refinement are R p = 0.114 and R wp = 0.148. The compound La8Al13Sn3 decomposes into LaAl2 with cubic structure and space group Fd $ \bar 3 $ \bar 3 m (227), LaAl3 with hexagonal structure and space group P63/mmc (194), and Sn at 720°C.  相似文献   

13.
A rotary viscosimeter and Raman spectrum were employed to measure the viscosity and structural information of the CaO-SiO2-P2O5-FetO system at 1673 K. The experimental data have been compared with the calculated results using different viscosity models. It shows that the National Physical Laboratory (NPL) and Pal models fit the CaO-SiO2-P2O5-FeOt system better. With the P2O5 content increasing from 5% to 14%, the viscosity increases from 0.12 Pa s to 0.27 Pa s. With the FeO content increasing from 30% to 40%, the viscosity decreases from 0.21 Pa s to 0.12 Pa s. Increasing FeO content makes the complicated molten melts become simple, and increasing P2O5 content will complicate the molten melts. The linear relation between viscosity and structure parameter Q(Si + P) was obtained by regression analysis. The calculated viscosity by using the optimized NPL and Pal model are almost identical with the fitted values.  相似文献   

14.
The temperature dependences of the electrical resistivity and thermal electromotive force (thermal e.m.f.) of the Ni–25 at % V, Ni–28 at % V, and Ni–33 at % V alloys in a temperature range of 300–1600 K have been reported; the dependences have been measured during slow heating and cooling of quenched and annealed samples. It has been shown that, near the order–disorder phase-transformation temperature, the temperature dependences of the electrical resistivity of the Ni75V25 and Ni67V33 alloys demonstrate a kink (second-order phase transition) and a jump (first-order phase transition), respectively. The behavior of the experimental dependences is discussed in terms of the band Mott s–d scattering model.  相似文献   

15.
In this study, indium-filled CoSb3 skutterudite is synthesized via encapsulated induction melting and subsequent annealing at 823 K for six days, and the crystal structure, lattice constant, filler position, phase homogeneity and stability were investigated. All of the In-filled CoSb3 samples were n-type conducting samples. The temperature dependence of the electrical resistivity showed InzCo4Sb12 is a highly degenerate semiconducting material. The thermal conductivity was reduced considerably by In filling. The highest thermoelectric figure of merit value was achieved when the In filling fraction is 0.25. It was found that the ZT of the In-filled CoSb3 (InzCo4Sb12) was higher than that of the In-substituted CoSb3 (Co3.75In0.25Sb12 and Co4Sb11.75In0.25). This is mainly due to the lower thermal conductivity and higher Seebeck coefficient.  相似文献   

16.
As part of a general contribution to the study of accelerator driven system (ADS) nuclear reactor feasibility, a study of the five-component system Bi-Fe-Hg-O-Pb was undertaken. New results about the quasi-binary Bi2O3-Fe2O3 are presented in this paper. The phase diagram was reinvestigated by differential scanning calorimetry, x-ray diffraction, and electron probe microanalysis. A new compound was discovered and characterized: Bi25FeO40. Its crystallographic structure was refined. Invariant and transition temperatures are given, as well as phase compositions.  相似文献   

17.
Phase equilibria in the Tl2Te-Tl5Te3-Tl9TmTe6 section of the Tl-Tm-Te ternary system were experimentally studied by using the powder x-ray diffraction technique, differential thermal analysis, as well as microhardness measurements applied to equilibrated alloys. Several isopleth sections and isothermal section at 680 K, as well as projections of the liquidus and solidus surfaces, were constructed. The Tl5Te3-Tl9TmTe6 section is characterized by the formation of continuous series of solid solutions (δ-phase) with Tl5Te3 tetragonal structure, which penetrate deep into the concentration triangle and occupy more than 90% of its area. A narrow area of solid solutions (α-phase) based on Tl2Te was detected.  相似文献   

18.
Precursor of nanocrystalline Zn0.5Ni0.5Fe2O4 was obtained by grinding mixture of ZnSO4·7H2O,NiSO4·6H2O,FeSO4·7H2O,and Na2CO3·10H2O under the condition of surfactant polyethylene glycol(PEG)-400 being present at room temperature,washing the mixture with water to remove soluble inorganic salts and drying it at 373 K.The spinel Zn0.5Ni0.5Fe2O4 was obtained via calcining precursor above 773 K.The precursor and its calcined products were characterized by differential scanning calorimetry(DSC) ,Fourier transform infrared(FT-IR) ,X-ray diffraction(XRD) ,and vibrating sample magnetometer(VSM) .The result showed that Zn0.5Ni0.5Fe2O4 obtained at 1073 K had a saturation magnetization of 74 A·m2·kg-1.Kinetics of the crystallization process of Zn0.5Ni0.5Fe2O4 was studied using DSC technique,and kinetic parameters were determined by Kissinger equation and Moynihan et al.equation.The value of the activation energy associated with the crystallization process of Zn0.5Ni0.5Fe2O4 is 220.89 kJ·mol-1.The average value of the Avrami exponent,n,is equal to 1.59±0.13,which suggests that crystallization process of Zn0.5Ni0.5Fe2O4 is the random nucleation and growth of nuclei reaction.  相似文献   

19.
Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The measured results indicate that surface coating with 1.0 wt% Cr 2 O 3 does not affect the LiNi 1/3 Co 1/3 Mn 1/3 O 2 crystal structure (α-NaFeO 2 ) of the cathode material compared to the pristine material, the surfaces of LiNi 1/3 Co 1/3 Mn 1/3 O 2 samples are covered with Cr 2 O 3 well, and the LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with Cr 2 O 3 has better electrochemical performance under a high cutoff voltage of 4.5 V. Moreover, at room temperature, the initial discharging capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with 1.0 wt.% Cr 2 O 3 at 0.5C reaches 169 mAh·g 1 and the capacity retention is 83.1% after 30 cycles, while that of the bare LiNi 1/3 Co 1/3 Mn 1/3 O 2 is only 160.8 mAh·g 1 and 72.5%. Finally, the coated samples are found to display the improved electrochemical performance, which is mainly attributed to the suppression of the charge-transfer resistance at the interface between the cathode and the electrolyte.  相似文献   

20.
The effect of accelerated Ar+ ions on the crystallization process and magnetic properties of nanocrystalline Fe72.5Cu1Nb2Mo1.5Si14B9 alloy has been studied using X-ray diffraction analysis, transmission electron microscopy, thermomagnetic analysis, and other magnetic methods. Irradiation by Ar+ ions with an energy of 30 keV and a fluence of 3.75 × 1015 cm–2 at short-term heating to a temperature of 620 K (which is 150 K below the thermal threshold of crystallization) leads to the complete crystallization of amorphous alloy, which is accompanied by the precipitation of the α-Fe(Si) solid solution crystals (close in composition to Fe80Si20), Fe3Si stable phase, and metastable hexagonal phases. The crystallization caused by irradiation leads to an increase in the grain size and changes the morphology of grain boundaries and volume fraction of crystalline phases, which is accompanied by changes in the magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号