首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sn-filled and Te-doped CoSb3 skutterudites (SnxCo8Sb23.25Te0.75) were synthesized by the encapsulated induction melting process. Single δ-phase was successfully obtained by subsequent heat treatment at 823 K for 6 days. Structural characterizations were carried out through X-ray diffraction studies. Transport properties such as the Seebeck coefficient, electrical resistivity, thermal conductivity, carrier concentration and mobility were measured and analyzed. The unfilled Co8Sb23.25Te0.75 sample showed n-type conductivity from 300 K to 700K. However, the Sn-filled SnxCo8Sb23.25Te0.75 showed n-type conductivity for z=0.25 and 0.5, and p-type conductivity for z=1.0 and 1.5 from 300 K to 700 K. Thermal conductivity was reduced by the impurity-phonon scattering. The dimensionless figure of merit (ZT) was remarkably improved over that of untreated CoSb3. However, the ZT value decreased when filling with z≥1.0 because the conductivity type was changed from n-type to p-type, thereby allowing bipolar conduction. The details are discussed in terms of the two-band model and the bipolar thermoelectric effect.  相似文献   

2.
Nano-TiO2/Co4Sb11.7Te0.3 composites were prepared by mechanical alloying (MA) and cold isostatic pressing (CIP) process.The phase composition,microstructure,and thermoelectric properties were characterized.The diffraction spectra of all samples well corresponds to CoSb3 skutterudite diffraction plane.TiO2 agglomerates into irregular clusters.They locate at the grain boundaries or some are distributed on the surface of Co4Sb11.7Te0.3 particles.For composites with high TiO2 content (0.6% and 1.0% TiO2),the phonon scattering by TiO2 particle,pores,and small size grains can result in a remarkable reduction in thermal conductivity.The maximum value of ZT is 0.79 for sample with 0.6 wt.% TiO2 at 700 K,which is 11% higher than that of non-dispersed sample.  相似文献   

3.
Nanostructured skutterudite-related compound Fe0.25Ni0.25Co0.5Sb3 was synthesized by a solvothermal method using FeCl3, NiCl2, CoCl2, and SbCl3 as the precursors and NaBH4 as the reductant. The solvothermally synthesized powders consisted of fine granules with an average particle size of tens of nanometers. The bulk material was prepared by hot pressing the powders. Transport property measurements indicated a heavily doped semiconductor behavior with n-type conduction. The thermal conductivity is about 1.83 W·m−1·K−1 at room temperature and decreases to 1.57 W·m−1·K−1 at 673 K. The low thermal conductivity is attributed to small grain size and high porosity. A maximum dimensionless figure of merit of 0.15 is obtained at 673 K.  相似文献   

4.
This paper is devoted to investigating the microstructure and thermoelectric properties of Yb-filled skutterudite Yb0.1Co4Sb12 under a cyclic thermal loading from room temperature to 773 K. The results indicate after 1000 cycles, the surface morphology changes dramatically, and clear grain boundaries appear on the surface of the sample. The grain sizes of the sample change little after 1000 cycles, and the main phase is still skutterudite; however, a trace amount of YbSb also exists. In addition, the electrical conductivity and thermal conductivity decrease distinctly after 1000 cycles, but the absolute value of the Seebeck coefficient increases a little. Consequently, the ZT value decreases slightly from 0.75 at 800 K before cycling to 0.69 after 1000 cycles. It indicates that the effect of the cyclic thermal loading on the ZT of the Yb0.1Co4Sb12 material is not distinct.  相似文献   

5.
Li-filled CoSb3, which is inaccessible under ambient pressure, was successfully synthesized with a high-pressure synthesis technique, demonstrating a fast and effective way to broaden elemental species that can be filled into voids of skutterudites. The optimized Li0.36Co4Sb12, with a greatly enhanced thermal power factor and much reduced thermal conductivity, has a ZT value of 1.3 at 700 K, the highest among all single elemental filled CoSb3 materials at this temperature. In addition, an instructive linear relationship between the Einstein temperatures of the distinct rattling fillers and their ionic radii is revealed, which as a reference can easily be applied to the multiple elemental filling strategy for selecting suitable filling elemental species to reduce the lattice thermal conductivity more effectively.  相似文献   

6.
Ni-doped CoSb3 skutterudites were prepared by encapsulated induction melting and their thermoelectric and electronic transport properties were investigated. The negative signs of Seebeck and Hal coefficients for all Ni-doped specimens revealed that Ni atoms successfully acted as n-type dopants by substituting Co atoms. The carrier concentration increased as the Ni doping content increased, and the Ni dopants could generate excess electrons. However, the carrier mobility decreased as the doping content increased, which indicates that the electron mean free path was reduced by the impurity scattering. The Seebeck coefficient and the electrical resistivity decreased as the carrier concentration increased, as the increase in carrier concentration by doping overcame the decrease in the carrier mobility by impurity scattering. The Seebeck coefficient showed a negative value at all temperatures examined and increased as the temperature increased. The temperature dependence of electrical resistivity suggested that Co1−xNixSb3 is a highly degenerate semiconducting material. Thermal conductivity was considerably reduced by Ni doping, and the lattice contribution was dominant in the Ni-doped CoSb3.  相似文献   

7.
p-type Sn-doped CoSb3-based skutterudite compounds have been prepared using melting-quenching-annealing method and spark plasma sintering technique. Sn atoms in our samples are completely soluted on Sb-site with a fixed charge state and non-magnetic feature, providing a better choice to ascertain the effect of element doping at the [Co4Sb12] framework on the electrical and thermal transport properties in p-type skutterudites. Doping Sn at the framework introduces additional ionized impurity scattering to affect the electron transport greatly. Similar electrical transport properties between Ce0.2Co4Sb11.2Sn0.8 and Co4Sb11Sn0.6Te0.4 suggest that Ce fillers contribute little to the valence band edge. Filling Ce into the voids and doping Sn at the framework introduce additional phonon resonant and point defect scattering mechanisms, thereby reducing lattice thermal conductivity remarkably. Moreover, our data suggest that combining these two effects is more effective to suppress lattice thermal conductivity through scattering broad range of phonons with different frequencies.  相似文献   

8.
This study reports the synthesis and characterization of polycrystalline indium-filled InxRh4Sb12 (0 ≤ x ≤ 0.2) skutterudites. The structural response to indium filling was monitored by whole pattern fitting of the powder X-ray diffraction data. Indium occupation of the oversized void-sites was verified by its unusually large thermal displacement parameter. The indium solubility limit approached 0.15. The principal thermoelectric properties were measured from 300 to 600 K. All samples are semiconducting. Indium void-site occupation reduced the lattice thermal conductivity of In0.15Rh4Sb12 30% at 300 K; however, the effect was subverted at elevated temperatures due to a coincident increase in bipolar thermal diffusion. The high-temperature thermoelectric figure of merits (ZT's) are low compared to the isostructural indium-filled InxCo4Sb12 skutterudites due to a striking sign change in the Seebeck coefficients at 400 K and relatively high thermal conductivities.  相似文献   

9.
Te-doped CoSb3 (CoSb3−yTey) skutterudites were prepared by hot pressing and their electronic transport properties examined. A single δ-phase was successfully obtained. The Seebeck and Hall coefficients confirmed that all the Te-doped CoSb3 showed n-type conduction. The Te atoms successfully acted as electron donors by substitution of the Sb atoms. The carrier concentration increased an order of 1020 cm−3 by Te doping, whereas the carrier mobility decreased as the doping content increased. The Seebeck coefficient and electrical resistivity decreased with an increase in the Te content. The doping considerably reduced the thermal conductivity due to electron-phonon scattering. The lattice contribution was dominant over the electronic contribution.  相似文献   

10.
《Acta Materialia》2008,56(8):1733-1740
The thermodynamic stabilities of alkaline earth (Ca, Sr and Ba), and rare earth (La, Ce and Yb), filled CoSb3 skutterudites have been studied using a plane-wave density functional method. By combining the formation energy of inserting an impurity into the intrinsic void of CoSb3 and that of secondary phases ISb2 and CoSb2, it is found that the filling fraction limit (FFL) or the maximum filling fraction of an impurity I corresponds to the minimum formation energy for a mixed chemical reaction route that results in the formation of filled skutterudite IyCo4Sb12 at the maximum filling as well as the formation of secondary phases. Theoretically estimated FFLs of various impurities in the voids of CoSb3 are in good agreement with the reported experimental data. A schematic phase diagram for filled CoSb3 is given. Discussion on the effect of the ionic radius of a filler and the content of Sb on FFL is presented.  相似文献   

11.
Nanocomposite engineering has been proved effective in diverse regimes of material research to attain a performance beyond each constituent phase. In this work, Yb-filled CoSb3 (bulk matrix/host)-Bi0.4Sb1.6Te3 (secondary inclusion) thermoelectric nanocomposites have been synthesized via an ex situ process. Bi0.4Sb1.6Te3 inclusions are mainly distributed at the grain boundaries of Yb0.2Co4Sb12 matrix in the composites. In particular, Te diffuses in situ from Bi0.4Sb1.6Te3 through Yb0.2Co4Sb12 matrix during the hot pressing process. This, combined with the grain boundary effect, results in favorable changes in the carrier concentration, carrier mobility, electrical resistivity, Seebeck coefficient, and thermal conductivity. Such synergistic changes are notably absent in the stand-alone Te-doped Yb-filled CoSb3, suggesting the key role of diffusion and grain boundaries. As a result, a maximum ZT value of 0.96 has been attained for Yb0.2Co4Sb12-2 wt% Bi0.4Sb1.6Te3 at 650 K. The present work opens a new avenue towards high performance thermoelectric composites via controlled inter-constituent diffusion and grain boundary effect.  相似文献   

12.
P-type Bi2?xSbxTe3:Cum (x = 1.5–1.7 and m = 0.002–0.003) solid solutions were synthesized using encapsulated melting and were consolidated using hot pressing. The effects of Sb substitution and Cu doping on the charge transport and thermoelectric properties were examined. The lattice constants decreased with increasing Sb and Cu contents. As the amount of Sb substitution and Cu doping was increased, the electrical conductivity increased, and the Seebeck coefficient decreased owing to the increase in the carrier concentration. All specimens exhibited degenerate semiconductor characteristics and positive Hall and Seebeck coefficients, indicating p-type conduction. The increased Sb substitution caused a shift in the onset temperature of the intrinsic transition and bipolar conduction to higher temperatures. The electronic thermal conductivity increased with increasing Sb and Cu contents owing to the increase in the carrier concentration, while the lattice thermal conductivity slightly decreased due to alloy scattering. A maximum figure of merit, ZTmax = 1.25, was achieved at 373 K for Bi0.4Sb1.6Te3:Cu0.003.  相似文献   

13.
In this study, the thermoelectric properties of 0.1 wt.% Cdl2-doped n-type Bi2Te2.7Sb0.3 compounds, fabrieated by SPS in a temperature range of 250°C to 350°C, were characterized. The density of the compounds was increased to approximately 100% of the theoretical density by carrying out consolidation at 350°C. The Seebeck coefficient, thermal conductivity, and electrical resistivity were dependent on a hydrogen reduction process and the sintering temperature. The Seebeck coefficient and the electrical resistivity increased with the reduction process. Also, electrical resistivity decreased and thermal conductivity increased with sintering temperature. The results suggest that carrier density and mobility vary according to the reduction process and sintering temperature. The highest figure of merit, 1.93×10−3 K−1, was obtained for the compound consolidated at 350°C for 2 min.  相似文献   

14.
Single-phase polycrystalline dual-element-filled skutterudites BaxCeyCo4Sb12 (0 < x < 0.4, 0 < y < 0.1) are synthesized by the melting–quenching–annealing and spark plasma sintering methods. The electrical conductivity, Seebeck coefficient, thermal conductivity and low-temperature Hall data of these compounds are reported. Our results suggest that there is essentially no difference in electrical transport properties between the dual-element-filled BaxCeyCo4Sb12 and single-element-filled BayCo4Sb12 systems. The Ba–Ce co-filling is more effective in lattice thermal conductivity reduction than Ba single filling in the temperature range of 300–850 K. Very low lattice thermal conductivity values less than 2.0 W m?1 K?1 are obtained at room temperature. Consequently, enhanced thermoelectric figure of merits (ZT) for these dual-element-filled CoSb3 skutterudites are achieved at elevated temperatures, in particular ZT = 1.26 at 850 K for Ba0.18Ce0.05Co4Sb12.02.  相似文献   

15.
The synthesis and thermoelectric properties of In0.1−xCo4Sb12−x skutterudite-based nanocomposites with xInSb nanoinclusions are reported. The nanoinclusions reduce the thermal conductivity of the composites considerably compared with nanoinclusion-free In0.1Co4Sb12. Unequivocal evidence is provided demonstrating that the InSb nanoinclusions found in some of the highest reported thermoelectric figure of merit (ZT) skutterudites are synthesized in situ from filler atoms diffusing out of the icosahedral void-sites, and the kinetics of their synthesis is enhanced strongly by mechanical attrition. Moreover, a procedure designed to maximize the concentration of InSb nanoinclusions is reported, and can be employed to create void-site-filled and optimally doped skutterudite-based InSb-nanocomposites with exceptional ZT.  相似文献   

16.
Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The measured results indicate that surface coating with 1.0 wt% Cr 2 O 3 does not affect the LiNi 1/3 Co 1/3 Mn 1/3 O 2 crystal structure (α-NaFeO 2 ) of the cathode material compared to the pristine material, the surfaces of LiNi 1/3 Co 1/3 Mn 1/3 O 2 samples are covered with Cr 2 O 3 well, and the LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with Cr 2 O 3 has better electrochemical performance under a high cutoff voltage of 4.5 V. Moreover, at room temperature, the initial discharging capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with 1.0 wt.% Cr 2 O 3 at 0.5C reaches 169 mAh·g 1 and the capacity retention is 83.1% after 30 cycles, while that of the bare LiNi 1/3 Co 1/3 Mn 1/3 O 2 is only 160.8 mAh·g 1 and 72.5%. Finally, the coated samples are found to display the improved electrochemical performance, which is mainly attributed to the suppression of the charge-transfer resistance at the interface between the cathode and the electrolyte.  相似文献   

17.
LiNi1/3Co1/3Mn1/3O2 cathode material was surface-treated to improve its electrochemical performance. Al2O3 nanoparticles were coated onto the surface of LiNi1/3Co1/3Mn1/3O2 powder using a sol-gel method. The as-prepared Al2O3 nano-particle was identified as the cubic structure of Al2O3. XRD showed that the LiNi1/3Co1/3Mn1/3O2 structure was not affected by the Al2O3 coating. With a coating of 3 wt.% Al2O3 on LiNi1/3Co1/3Mn1/3O2, the cyclic-life performance and rate capability were improved. However, heavier coatings (5 wt.%) on LiNi1/3Co1/3Mn1/3O2 resulted in a considerable decrease of the discharge capacity and rate capability. The thermal stability of LiNi1/3Co1/3Mn1/3O2 materials was greatly improved by the 3 wt.% Al2O3 coating.  相似文献   

18.
In order to enhance the thermoelectric (TE) properties of CoSb3, we tried to reduce the lattice thermal conductivity (κlat) by filling Tl into the voids and substitution of Rh for Co. We prepared polycrystalline samples of Tlx(Co1−yRhy)4Sb12 (x = 0, 0.05, 0.10, 0.15, 0.20 and y = 0.1, 0.2) and examined their TE properties from room temperature to 750 K. All the samples indicated negative values of the Seebeck coefficient (S). Both the electrical resistivity and the absolute values of the S decreased with increasing the Tl-filling ratio. The Tl-filling and Rh substitution reduced the κlat, due to the rattling and the alloy scattering effects. The minimum value of the κlat was 1.54 W m−1 K−1 at 550 K obtained for Tl0.20(Co0.8Rh0.2)4Sb12. Tl0.20(Co0.8Rh0.2)4Sb12 exhibited the best TE performance; the maximum value for the dimensionless figure of merit ZT was 0.58 at around 600 K.  相似文献   

19.
The corrosion behavior of an amorphous Co69Fe4.5Ni1.5Si10B15 alloy ribbon was examined as a function of solution temperature (15 °C to 55 °C) and pH (3 to 11). The results of potentiodynamic polarization tests in H2SO4 solution, NaCl solution, and HCl + NaOH solution at various levels of pH showed that the corrosion resistance for the alloy ribbon significantly deteriorated with increasing temperature and decreasing pH for given conditions. The Co69Fe4.5Ni1.5Si10B15 alloy was actively dissolved in solutions at pH 3 to 9 but passivated in a solution at pH 11. By comparison of the corrosion behaviors of Co69Fe4.5(Nb,Cr,Ni)1.5Si10B15 alloys in the solution at pH 11, Ni was considered to contribute less in improving the corrosion resistance of the alloy than did Cr and Nb.  相似文献   

20.
In the present work, Yb2Si2O7 powder was synthesized by solid-state reaction using Yb2O3 and SiO2 powders as starting materials. Atmospheric plasma spray technique was applied to fabricate Yb2Si2O7 coating. The phase composition and microstructure of the coating were characterized. The density, open porosity and Vickers hardness of the coating were investigated. Its thermal stability was evaluated by thermogravimetry and differential thermal analysis (TG-DTA). The thermal diffusivity and thermal conductivity of the coating were measured. The results showed that the as-sprayed coating was mainly composed of crystalline Yb2Si2O7 with amorphous phase. The coating had a dense structure containing defects, such as pores, interfaces and microcracks. The TG-DTA results showed that there was almost no mass change from room temperature to 1200 °C, while a sharp exothermic peak appeared at around 1038 °C in DTA curve, which indicated that the amorphous phase crystallized. The thermal conductivity of the coating decreased with rise in temperature up to 600 °C and then followed by an increase at higher temperatures. The minimum value of the thermal conductivity of the Yb2Si2O7 coating was about 0.68 W/(m K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号