首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this paper the effect of ultrasonic vibration of the tool in the process of electrical discharge machining is investigated. The ultrasonic vibration of the tool has significant effect on the dynamic behaviour of the vapour bubble generated between the tool and the workpiece due to the electrical discharge. The computational simulation of the bubble behaviour is carried out by employing the boundary integral equation method. Results show that when the electrical discharge occurs in the closest position of the tool to the workpiece, the vapour bubble expands to the largest maximum volume of the bubble and the lifetime of the bubble is the longest. This in turn makes the pressure inside the bubble decrease rapidly to the lowest magnitude and causes melted material at the sparked point vaporize and leave the crater on the surface of the workpiece.  相似文献   

2.
Electrical discharge machining (EDM) is a powerful technique for machining of hard and brittle materials. In this process, because of electrical discharge, a vapour bubble is generated in the dielectric liquid between the tool and the workpiece. The growth and collapse phases of the vapour bubble have significant effect on the hydrodynamic behaviour of the dielectric liquid domain between the tool and the workpiece and cause molten material to escape from the crater. Previous numerical studies on the dynamics of an electrical discharge-generated vapour bubble have simulated the growth and collapse of the bubble until it has taken the shape of an hour-glass. This is necking phenomenon which is followed by splitting of the bubble into two parts. In this paper dynamics of an electrical discharge-generated vapour bubble between the tool and the workpiece after its splitting are investigated by using the boundary integral equation method. Development of a liquid jet on the boundary of the each of the upper and lower parts of the bubble and the impingement of the liquid jets on the nearby rigid surfaces are sought. This paper consists of two parts. In part one, the vapour bubble is initially located between the tool and the workpiece. Consequently the dynamic behaviour of the two parts of the bubble in the absence of the buoyancy forces are symmetric with respect to a horizontal axis through the mid-point between the tool and the workpiece. In part two, the elrecrical discharge-generated vapour bubble is initially located in the vicinity of the workpiece. Therefore during the necking phenomenon the upper part of the bubble is smaller than its lower part. Consequently the dynamic behaviour of the two parts of the bubble after its splitting are significantly different.  相似文献   

3.
The machining characteristics of electrical discharge machining (EDM) directly depend on the discharge energy which is transformed into thermal energy in the discharge zone. The generated heat leads to high temperature, resulting in local melting and evaporation of workpiece material. However, the high temperature also impacts various physical and chemical properties of the tool and workpiece. This is why extensive knowledge of development and transformation of electrical energy into heat is of key importance in EDM. Based on the previous investigations, analytical dependence was established between the discharge energy parameters and the heat source characteristics in this paper. In addition, the thermal properties of the discharged energy were experimentally investigated and their influence on material removal rate, gap distance, surface roughness and recast layer was established. The experiments were conducted using copper electrode while varying discharge current and pulse duration. Analysis and experimental research conducted in this paper allow efficient selection of relevant parameters of discharge energy for the selection of most favorable EDM machining conditions.  相似文献   

4.
Abstract

The performance of electrical discharge machining (EDM) primarily depends on the spark quality generated in the inter-electrode gap (IEG) between the tool and workpiece. A method for obtaining accurate information about the spark gap is required to effectively monitor the EDM process. The rise and fall of thermal energy in the discharge zone at a rapid rate during the dielectric breakdown produces high-pressure shock waves. This work explores the suitability of using acoustic emission (AE) generated from these shock waves and the elastic AE waves released on the workpiece due to the induced stress to monitor the performance and spark gap in EDM. The information content of the AE signals acquired at various machining conditions was extracted using AE RMS, spectral energy and peak amplitude. These features were able to well discriminate the machining condition, tool material, workpiece material, flushing pressure, current density, the initial surface roughness of the tool. Additionally, the AE signal features had a good and consistent correlation with the performance parameters, including material removal rate, surface roughness (Ra and Rq) and tool wear. The findings lay the groundwork to develop an effective, non-intrusive in-situ AE-monitoring system for performance and IEG condition in EDM.  相似文献   

5.
提出了一种汽中电火花加工技术,其加工介质为水蒸汽,蒸汽由蒸汽发生器获得,经管状电极喷向工件。试验结果显示:一般情况下,材料去除率随放电电流、脉冲宽度的增大而增大,随脉冲间隔的增大而减小,但一味地增大脉冲宽度和减小脉冲间隔会造成电火花加工稳定性变差,从而降低材料去除率;汽中电火花加工技术的工具电极相对损耗率相对较低,受脉冲宽度、脉冲间隔影响小,但在大的放电电流下,电极相对损耗率会有所增加,且汽中电火花加工的工件附着物较少。
  相似文献   

6.
超声振动辅助气体介质电火花加工研究   总被引:1,自引:0,他引:1  
简述了超声振动辅助气体介质电火花加工原理,并设计开发了相应的实验机床。实验结果表明:工具电极做超声振动时的材料去除率比工件做超声振动时的材料去除率要小;材料去除率随峰值电压、峰值电流、脉冲宽度、气体介质压力的增大而增大,随脉间宽度、工具电极壁厚的增大而减小。简述了超声振动辅助气体介质电火花加工材料蚀除机理。  相似文献   

7.
MICRO ELECTRICAL DISCHARGE MACHINING DEPOSITION IN AIR   总被引:1,自引:0,他引:1  
A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are analyzed and the realized conditions are predicted. With an ordinary EDM shaping machine, brass as the electrode, high-speed steel as the workpiece, a lot of experiments are carried out on micro EDD systematically and thoroughly. The effects of major processing parameters, such as the discharge current, discharge duration, pulse interval and working medium, are obtained. As a result, a micro cylinder with 0.19 mm in diameter and 7.35 mm in height is deposited. By exchanging the polarities of the electrode and workpiece the micro cylinder can be removed selectively. So the reversible machining of deposition and removal is achieved, which breaks through the constraint of traditional EDM. Measurements show that the deposited material is compact and close to workpiece base, whose components depend on the tool electrode material.  相似文献   

8.

Wire electrical discharge machining is a non-traditional cutting process for machining of hard and high strength materials. This study analyzed the effects of the main input parameters of wire electrical discharge machining of ASP30 steel (high alloyed Powder metallurgical [PM] high speed steel) as the workpiece on the material removal rate and surface roughness. The input parameters included spraying pressure and electric conductivity coefficient of the dielectric fluid, linear velocity of the wire and wire tension. The machined surface quality was evaluated using SEM pictures. Results indicated that increasing the spraying pressure of dielectric fluid leads to a higher material removal rate and surface roughness and that increasing the wire tension, linear velocity of wire, and electric conductivity of the dielectric fluid decreases the material removal rate and surface roughness.

  相似文献   

9.
Friction tests were conducted with a direct-acting automotive valvetrain to evaluate the effect of the axial cross-sectional shape of the cam on friction using various cam shapes from concave to convex. The results revealed that friction levels could be understood as a function of the contact ratio between the cam and mating valve lifter regardless of the cam cross-sectional shape. A flat shape with a high contact ratio was found to have the lowest level of friction. Compared to a convex-shaped cam of the same height, a concave cam tended to show higher friction because of the lower contact ratio with the valve lifter. The results of finite element method (FEM) calculations also showed that the higher contact pressure of concave cams in the contact area was a factor that caused greater friction.  相似文献   

10.
为对电火花线切割加工机理有更深刻的认识,了解加工参数对加工精度的影响规律,介绍了一个电火花线切割加工粗加工的仿真系统。仿真系统通过对放电点的探索、工件的去除以及对线电极丝振动的分析,将实际的加工现象形象地再现于计算机上。为证实仿真系统的正确性,将仿真结果与试验结果进行了比较。在试验结果的获取中,为能够得到很难测量的线电极周围的放电间隙和工件形状数据,提出一种新的三维形状测量方法。通过对仿真结果和试验结果的比较,定性地证明了仿真方法的正确性。研究结果表明:改变线电极张力及伺服电压值时,从仿真过程得到的加工形状结果与试验得到的加工形状结果其倾向基本一致;加工缝端部的形状呈凸形还是呈凹形,取决于加工过程中放电爆发力和静电引力的相对大小。  相似文献   

11.
In this study, single discharge thermo-electrical model of workpiece material removal in electrical discharge machining (EDM) was developed. Developed model includes generation of energy in liquid media, variation of plasma channel radius and transfer of heat from the channel by the electrical discharge. Effect of generated energy in plasma channel on workpiece removal was theoretically investigated by using different experimental parameters used in literature. The developed model finds the temperature distribution in the workpiece material using finite element solver ANSYS Workbench (v.11) software. It’s assumed that the workpiece material reaches the melting point of workpiece material was removed from the surface. Electrical discharge process was simulated by using transient thermal analysis. The developed model has also been validated by comparing the theoretically obtained material removal values with the experimental ones.  相似文献   

12.
A new finishing mode has been utilized as an effective finishing tool design with an electrode and a nonconductive grindstone to execute grinding and electrochemical smoothing synchronously. This mode can be used for various end-turning operations. Through simple equipment attachment, grinding and electrochemical smoothing can follow the cutting process on the same machine. Among the factors affecting electrochemical smoothing, grinding performance combined with electrochemical smoothing, is primarily discussed. In the experiment, different types of electrodes are used with continuous and pulsed direct current. The control factors include die material, chemical composition, and concentration of the electrolyte. The experimental parameters are finish tool and workpiece rotational speed, flow rate of electrolytes, gap width between electrode and workpiece, electrical current density and pulsed period, and finishing tool geometry. High workpiece and electrode rotational speed produces a better finish. A thin electrode is associated with higher current density and provides larger discharge space for a better finish. Pulsed direct current can promote the effect of electrochemical finishing. Decreasing the height of the finish tool to a partial-form tool is associated with less restricted electrolyte flow and more discharge space, which creates better finishes than the full-form tools. The grindstone, with an adequately convex shape, also appeared to have an adequate initial gap width between the electrode and workpiece, which matches enough current density and obtains a better finish. The most effective geometric design for the finishing tool and the advantage of the low-cost equipment in electrochemical smoothing, following end-turning, is investigated in this study.  相似文献   

13.
Electro-discharge machining (EDM) characteristics of tungsten carbide-cobalt composite are accompanied by a number of problems such as the presence of resolidified layer, large tool wear rate and thermal cracks. Use of combination of conventional grinding and EDM (a new hybrid feature) has potential to overcome these problems. This article presents the face grinding of tungsten carbide-cobalt composite (WC-Co) with electrical spark discharge incorporated within face of wheel and flat surface of cylindrical workpiece. A face grinding setup for electro- discharge diamond grinding (EDDG) process is developed. The effect of input parameters such as wheel speed, current, pulse on-time and duty factor on output parameters such as material removal rate (MRR), wheel wear rate (WWR) and average surface roughness (ASR), are investigated. The present study shows that MRR increases with increase in current and wheel speed while it decreases with increase in pulse on-time for higher pulse on-time (above 100 μs). The most significant factor has been found as wheel speed affecting the robustness of electro- discharge diamond face grinding (EDDFG) process.  相似文献   

14.
In micro electrical discharge machining (EDM), because the material removal per single pulse discharge mainly determines the minimum machinable size of a micro EDM, decreasing the material removal per single pulse discharge is important. In this study, in order to decrease the material removal per single pulse discharge, high electric resistance materials such as single-crystal silicon are used for electrodes. Analytical results show that when the electrode resistance increases, the peak value of the discharge current decreases, whereas the pulse duration increases. In addition, the discharge energy decreases when increasing the resistance. Silicon is used as a tool electrode, and the effect of resistivity of the silicon tool electrode on the diameter of discharge craters generated on the stainless steel workpiece is examined. Experimental results reveal that with increasing silicon electrode resistivity, the diameter of discharge craters decreases. Because the diameter of discharge craters can be decreased to 0.5 μm, improved finished surfaces of Rz 0.03 μm are obtained.  相似文献   

15.
This paper presents an in-depth investigation into the transient impulsive pressure of an arc-curved water jet impacting a solid surface. The emphasis of this study is on the variations of the surface shape, which are classified into four types: The flat surface, the concave surface, the convex surface and the inclined surface. The numerical tool of arbitrary Lagrangian-Eulerian formulations is used to model the arc-curved jet impacting these different solid surface types. Elaborately designed experiments were conducted to test the impulsive pressure profile; the experimental results are found to be in approximate agreement with the numerical results. The impulsive pressure profiles of water jet impacting the flat and inclined solid surface are observed to exhibit two quintessential stages, in line with the traditional pressure profile; however, a double/multiple-peaked pressure structure is observed for the cases of the water jet impacting the concave and convex solid surfaces. Additionally, the value of the peak pressure is found to be a quadratic representation with the jet velocity, and the duration of the peak pressure is found to be an exponential representation with the jet velocity. The compression degrees of the liquid jet impacting the different surfaces are validated to be the root cause for the discrepancy of the impulsive pressure.  相似文献   

16.
空气中微细电火花沉积的工艺规律研究   总被引:3,自引:1,他引:3  
论述了一种新的电火花加工方法,它通过合理选择工艺条件在空气中将金属材料放电沉积在工件上。对电火花沉积加工的基本原理进行了分析,预测了实现条件,使用通用的电火花成形加工机床和常见的电极材料黄铜,在空气介质中,通过大量实验对微细电火花沉积进行了系统研究,得出各工艺参数的影响规律。在高速钢工件表面沉积出直径为0.19mm、高度为7.35mm的微小圆柱体。对沉积材料的测试表明,沉积材料致密,与基体结合紧密,成分取决于工具电极材料,同时基体硬度得到提高。  相似文献   

17.
Electrical discharge machining (EDM) is an excellent method to machine tungsten carbide with high hardness and high toughness. However, debris from this material produced by EDM re-sticking on the workpiece surface remarkably affects working efficiency and dimension precision. Therefore, this study investigated the re-sticky phenomenon of tungsten carbide and how to reduce the debris re-sticking on the workpiece surface. In general, the polarity in EDM depended on the different electrical parameters of the machine input and the different materials of the tool electrode. The first item of investigation observed the re-sticky position of the debris to study the effect of different polarities during the EDM process. Next, the tool electrode was set at different conditions without rotation and with a 200 rpm rotational speed to evaluate the rotating effect in EDM. Finally, different lift distances of the electrode and different shapes of electrode with rotation were utilized to investigate the improvement for reducing debris re-sticking on the machining surface. The results showed that only negative polarity in EDM could cause the re-sticky phenomenon on tungsten carbide. On the other hand, debris would notably re-stick on any machining position when the tool electrode was not rotated in EDM. Besides, debris significantly stuck on the center of the working area with rotation of the electrode. Additionally, a larger lift distance of the tool electrode could reduce debris re-sticking on the working surface, but this process would decrease material removal rate in EDM. In the end, a special shaped design of the tool electrode resulted in the re-sticky debris completely vanishing, when the electrode width was 0.6 times the diameter of this cylindrical electrode.  相似文献   

18.
冲裁件的尺寸精度取决于凸、凹模的刃口尺寸及公差。为了获得合格的冲裁件,在模具设计中应根据冲裁件的尺寸和公差等级、冲裁间隙、模具磨损规律、模具制造方法和成本等来确定凸、凹模的刃口尺寸和公差。  相似文献   

19.
混粉电火花加工中极性效应的研究   总被引:2,自引:0,他引:2  
为研究极性效应对混粉电火花加工的影响规律.采用钢对钢加工、铜对钢加工两种电极组合在添加硅粉的煤油工作液及普通煤油工作液中进行实验,并更换不同的极性,考察了两极材料的去除率和表面粗糙度,结果表明负极总能得到更高的材料去除率,而正极总能得到更低的表面粗糙度值。此现象可从两极表面能量密度差异的角度予以解释。  相似文献   

20.
This paper introduces the composite tool electrodes made of electrical conductive powder-filled polyester resin matrix material, providing promise for the electrical discharge machining (EDM) process. The dendrite-shaped copper powder, graphite powder, and their mixture were used as conductive fillers. Six different types of composite electrodes, namely, plain copper-polyester, pressed copper-polyester, furnaced copper-polyester, plain copper-graphite-polyester, pressed copper-graphite-polyester, and furnaced copper-graphite-polyester were prepared. It is found experimentally that increasing v f improved workpiece material removal rate, tool wear rate, relative wear, and electrical conductivity of electrodes. The pressed copper-polyester electrodes were found to be promising in the ED finishing of workpieces at low machining current settings. The practical applicability of the proposed composite electrodes in the industry was also illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号