首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermodynamic model was developed to describe the stability of (Ba,Sr)TiO3 (BST) solid solutions in the Ba–Sr–Ti–K–(EDTA)–H2O (EDTA = ethylenediaminetetraacetic acid) system. Phase diagrams were computed to identify the range of conditions suitable for making phase-pure BST. Hydrothermal experiments were performed to validate the thermodynamic model. The model was found to be more useful when an ideal solid solution was used to estimate the energetics for the BST phase instead of experimental thermodynamic data. In addition, EDTA was found to promote stable conditions for BST formation. When attempting to prepare Ba0.50Sr0.50TiO3 without EDTA, BaTiO3-rich and SrTiO3-rich phases precipitated separately, at 70°–160°C. However, in the presence of EDTA, a phase-pure Ba 0.55Sr0.45TiO3 solid solution was obtained at 90°–120°C. EDTA is effective because it prevents phase heterogeneities from forming and equalizes the adsorption affinity of strontium and barium species.  相似文献   

2.
High-purity strontium, zirconium, and titanium alkoxides were synthesized and characterized as precursors for complex oxides. Simultaneous hydrolytic decomposition either of strontium and zirconium alkoxides or of strontium and titanium alkoxides was used to obtain nearly stoichiometric, ideally mixed SrZrO3 or SrTiO3 powders of high surface activity. As-prepared helium-dried SrTiO3 is crystalline before calcination. An ultraviolet radiation technique demonstrates the nucleation and growth of SrZrO3 crystallites in the calcination temperature range to 350°C. The experimental results are supported by ir, TGA, and X-ray diffraction data. The high degree of control over purity, mixing uniformity, and crystallite size demonstrates the value of the alkoxide precursor approach for the solution of reproducibility problems encountered in the synthesis of electrical-quality ceramics.  相似文献   

3.
The precipitation process of solid phases Mg3(OH)5CI-4H2O (phase 5), Mg2(OH)3CI-4H2O (phase 3), and Mg(OH)2 was followed by the addition of NaOH water solution in MgCl2 water solutions of different concentrations (0.001 to 4.8 mol dm−3) and characterized by chemical, potentiometric, coulometric, and X-ray diffraction analyses. The concentration range in which the precipitation of solid phases occurs was determined. The phase distributions relative to the pH of solution and concentrations of magnesium and chloride were defined by the equilibrium diagram. The approximate solubility products of stable solid phases formed at different ionic strengths and at 293 K were determined.  相似文献   

4.
Polycrystalline barium titanate fired in nitrogen at 1300° to 1400°C accommodates up to 3 mole % UO2 in solid solution; its structure is then cubic at room temperature. With BaUO3 additions the structure becomes disordered and quasi-cubic. In air, about 1 mole % UO2 goes into solid solution in BaTiO3 but the structure remains tetragonal. Diffraction peaks of a new phase, possibly a ternary oxide of barium, uranium, and titanium, appear in patterns of specimens containing more than 2 mole % UO2. The dielectric constant of BaTiO3 ceramics fired in air, steam, or oxygen increases with up to about 0.5 mole % UO2 but declines rapidly above this level. The dielectric constant of BaUO3 is about two orders of magnitude lower than that of BaTiO3, and additions of BaUO3 invariably lower the dielectric constant of BaTiO3.  相似文献   

5.
Quasiperiodic Ba0.9Sr0.1TiO3 (BST) multilayers have been fabricated on SrTiO3 substrates by using chemical solutions containing polyethylene glycol (PEG), and effect of PEG content on optical properties of the BST multilayers have been investigated. Each multilayer with a single perovskite phase displays a layered structure consisting of dense and porous BST layers. It is found that the central wavelength of the reflection-band for BST multilayers shifts to longer wavelength with increasing the PEG concentration within a given polymer amount range. With the same numbers of period and processing condition, the BST multilayers derived from chemical solutions containing PEG additives with a relative molar amount of 0.5, exhibit the highest optical reflectivities.  相似文献   

6.
[(Trimethylsilyl)amino]titanium trichloride, (CH3)3-SiNHTiClj, was isolated as a red-orange crystalline solid in 58% yield from the reaction of TiCl4 with [(CH3)3Si]2NH in 1:1 molar ratio in dichloromethane at —78°C. Pyrolysis of (CH3)3SiNHTiCl3 at 600°C furnished titanium nitride. This precursor is suitable for the preparation of composites and was employed to prepare Si3N4-TiN and Ti-TiN powders by adding Si3N4 particles or titanium powders to a solution of (CH3), SiNHTiCl3 in dichloromethane, drying and pyrolyzing the resulting solid. This precursor also has been used as a binder to prepare Si3N4-TiN and Ti-TiN bodies. High-resolution transmission electron microscopic studies of the Si3N4-TiN composite showed that titanium nitride is concentrated on the surface of the Si3N4 particles.  相似文献   

7.
Barium strontium titanate, (Bax,Sr1-x TiO3, thin films of various compositions were prepared by a sol-gel method. Solutions consisting of acetate powders and titanium IV isopropoxide in a mixture of acetic acid and ethylene glycol were spin-coated onto silicon and platinum-coated silicon substrates. Processing parameters were optimized to develop stable solutions which yielded films with relatively low crystallization temperatures. It was determined that ethylene glycol was a necessary component of the solution to increase stability to precipitation and to decrease the crystallization temperature of the films. The grain size of the films varied with annealing temperature and atmosphere and directly affected the dielectric properties. A dielectric constant of 400 and a dissipation factor of 0.04 were measured at 1 kHz for (Ba0.8,Sr0.2) TiO3 films heated to 700°C for 1 h with a thickness of approximately 400 nm. Films of this composition maintained low leakage current densities for extended time periods when measured at an applied field of 75 kV/cm.  相似文献   

8.
When preparing homogeneous, fine barium titanate powders, the major difficulty is to avoid the spontaneous self-condensation between the Ti-OH groups. In the usual way of preparing fine barium titanate powders, chelating agents (citrate, oxalate) or simply unidentate ligands (alkoxy or carboxyl groups) are used to complex titanium atoms. Another way is to mix barium and titanium precursors in a strongly basic medium. The condensation between the Ti(OH)2-6Ba2+ species directly gives the perovskite compound. Using an alkoxide-hydroxide route, a homogeneous Ba-Ti solution was prepared that completely advanced by condensation between the Ti(OH)2-6Ba2+ species and led to a controlled-stoichiometry powder. Concerning pure barium titanate, dried powders exhibited the cubic perovskite structure, and a direct sintering at 1150°C, without calcination, led to highly dense BaTiO3 bodies with fine-grained uniform microstructure (1 μm) that exhibited a high permittivity value at room temperature ( K = 5400). The alkoxide-hydroxide method was also used to prepare dense alkaline-earth perovskite ceramics with complex compositions.  相似文献   

9.
Spinel LiMn2O4 as a cathode material for lithium secondary batteries has been synthesized by a mechanochemical process, and its electrochemical properties have been characterized. Highly disordered nanocrystalline LiMn2O4 powders have been prepared by the mechanochemical processing of Li2O and MnO2 powder mixtures for 24 h. Electrochemical characterization of mechanochemically processed powder has shown that the intercalation of Li+ takes place with an initial capacity of 167 mA·h/g in the 2.5–4.3 V range and has better capacity retention as compared to the well-ordered crystalline LiMn2O4 powders. The better capacity retention of the mechanochemically processed LiMn2O4 powder may be attributed to the highly disordered structure that could accommodate the Jahn–Teller distortion of the spinel structure during Li+ intercalation around the 3 V region.  相似文献   

10.
Solid solutions of various compositions in the system LiAl5O8–LiFe5O8 were prepared by calcining mixtures of Li2CO3, Al2O3, and Fe2O3. Lattice parameters of the solid solutions were determined by X-ray diffraction (XRD). Samples of equimolar composition were also prepared with titanium and magnesium as dopants. The doped and undoped samples were annealed at 1050°C for up to 192 h in air. Annealing at this temperature, which is inside the miscibility gap for an equimolar composition, led to the decomposition of the originally single-phase solid solution. The extent of phase transformation was followed by XRD. The fraction transformed was estimated using integrated peak intensities. The kinetic data were analyzed in light of the conventional kinetic equation and the previously derived equation which takes into account the diffusive and the interface transfer processes. It was observed that titanium enhances and magnesium suppresses the kinetics of phase separation. These results are rationalized on the premise that the predominant point defects are Schottky defects in this spinel system.  相似文献   

11.
Fluorite-type solid solutions crystallize directly at lower temperatures from amorphous materials prepared by the simultaneous hydrolysis of yttrium and titanium alkoxides. The lattice constant of the solid solution changes continuously as a function of composition. The kinetics of crystallization of the fluorite phase have been studied by X-ray measurements. The initial stage at each temperature proceeds rapidly in a short time. The final stage can be expressed in terms of the contracting cube equation 1—(1 —f)113= kt, the activation energy being 184 mol−1. A pyrochlore-type solid solution corresponding to the composition Y2Ti2O7 crystallizes at 8l5° to 900°C.  相似文献   

12.
An extensive X-ray study of CeO2–Nd2O3 solid solutions was performed, and the densities of solid solutions containing various concentrations of NdO1.5 were measured using several techniques. Solid solutions containing 0–80 mol% NdO1.5 were synthesized by coprecipitation from Ce(NO3)3 and Nd(NO3)3 aqueous solutions, and the coprecipitated samples were sintered at 1400°C. A fluorite structure was observed for CeO2–NdO1.5 solid solutions with 0–40 mol% NdO1.5, which changed to a rare earth C-type structure at 45–75 mol% NdO1.5. The change in the lattice parameters of CeO2–NdO1.5 solid solutions, when plotted with respect to the NdO1.5 concentration, showed that the lattice parameters followed Vegard's law in both the fluorite and rare earth C-type regions. The maximum solubility limit for NdO1.5 in CeO2 solid solution was approximately 75 mol%. The relationship between the density and the Nd concentration indicated that the defect structure followed the anion vacancy model over the entire range (0–70 mol% NdO1.5) of solid solution.  相似文献   

13.
The crystallization behavior and stoichiometric changes of barium titanium alkoxide-derived monolithic gels prepared by the sol-gel process using a high-concentration Ba2Ti precursor solution (0.8 mol/L) were investigated during aging at room temperature. Crystallization of the gels (which were amorphous, per X-ray diffraction analysis immediately after gelation) into the BaTiO3 perovskite phase increased during aging and was associated with significant shrinkage of the gels. Crystallization reached a value of ∼82% by the final stage of shrinkage, assuming the degree of crystallization of a gel treated at 600°C to be 100%. The stoichiometry of the gels (Ba/Ti molar ratio) also changed considerably during aging, as estimated by the concentrations of Ba and Ti that remained in the expelled liquid resulting from syneresis at any time during the aging process. Deviation in the Ba/Ti ratio of the precursor solution ranged from 0.015 at the initial stage of shrinkage to 0.003 at the final stage, a value determined by inductively coupled plasma atomic emission spectroscopy. The present study demonstrates the great advantage of using high-concentration precursor solutions of barium titanium alkoxides, rather than low-concentration solutions, to obtain BaTiO3 gel monoliths with high density and crystallinity and little stoichiometric deviation, by sol-gel processing at room temperature.  相似文献   

14.
Ti3SiC2 is synthesized by self-propagating high-temperature synthesis (SHS) of elemental titanium, silicon, and graphite powders. The reaction paths and structure evolution are studied in situ during the SHS of the 3Ti+Si+2C mixture by time-resolved X-ray diffraction coupled with infrared thermography. The proposed reaction mechanism suggests that Ti3SiC2 might be formed from Ti–Si liquid phase and solid TiC x . Finally, the effect of the powders starting composition on the Ti3SiC2 synthesis is studied. For the investigated initial mixtures, TiC x is always formed as a major impurity together with the Ti3SiC2 phase.  相似文献   

15.
Textured Sr0.53Ba0.47Nb2O6 ceramics with a relative density of >95% were fabricated using templated grain growth (TGG). Acicular KSr2Nb5O15 template particles synthesized via a molten salt process were aligned by tape casting in a mixture of solid-state-synthesized SrNb2O6 and BaNb2O6 powders. The resulting ceramics possessed strong fiber texture along the polar axis ([001]) of the strontium barium niobate. Samples with 15.4 wt% templates attained a textured fraction of 0.82 after sintering at a temperature of 1450°C for 4 h. These materials showed peak dielectric constants of 7550 at 1 kHz, remanent polarizations of 13.2 μC/cm2, saturation polarizations of 21 μC/cm2 (60%–85% of the single-crystal value), piezoelectric strain coefficients of 78 pC/N (70%–85% of the single-crystal value), and room-temperature pyroelectric coefficients of 2.9 × 10−2μC·(cm2·°C)−1 (52% of the single-crystal value). These results show that TGG is a viable option for accessing single-crystal properties in polycrystalline ceramics.  相似文献   

16.
Barium titanate precursors with Ba/Ti ratio 2:9 and 1:5 were prepared by first hydrolyzing titanium alkoxide and then mixing the resulting titania sol with a barium alkoxide-methanol solution. After drying, the xerogels of the precursors of barium titanates were sintered at temperatures from 700°C (4 h) to 1200°C (110 h or longer). Characterization of the product was performed using X-ray diffraction and laser Raman spectroscopy. At 700°C, BaTi5O11 was formed from the 1:5 precursor and a two-phase mixture of BaTi2O5 and BaTi5O11 was formed from the 2:9 precursor. After prolonged heating at 1200°C, the latter mixture converted to a single-phase material, Ba2Ti9O20.  相似文献   

17.
New vanadate and arsenate analogs of spodiosite (Sr2-(VO4)C1 and Sr2(AsO4)C1) were prepared. Isomorphism between chromium and vanadium spodiosites was established by formation of complete solid solutions. The vanadate analogs of calcium and barium, the arsenate analog of calcium, phosphate analogs of strontium and barium, and the fluorine analogs, Ca3(VO4)2·CaF2 and Sr3(VO4)2·SrF2, could not be synthesized. The optical absorption spectra of manganese-doped Sr2(VO4)Cl showed the presence of Mn5+ in the vanadium position, the site symmetry being approximately Td. Three transitions, 3T2( F ), 3T1( F ), and 1Al( G ) at (12,000 and 13,000 cm-1), (16,700 cm-1), and (14,300 cm-1), respectively, were observed from the ground state, 3A2( F ). The lower symmetry components were strong enough to split the energy level, 3T2( F ). The crystal field parameter Dq and the Racah parameters B and C were calculated to be 1200, 470, and 1927 cm-1, respectively.  相似文献   

18.
Ba1– x Pb x TiO3 powder with a fixed composition was prepared by the reaction of BaTiO3 powders with molten PbCl2at various PbCl2/BaTiO3 molar ratios at 600° and 800°C in a nitrogen atmosphere. When 0.1 μm powder was used, the reaction was finished when x = 0.9. Two phases of BaTiO3and a solid solution of Ba1– x Pb x TiO3 coexisted, but the final phase gave a solid solution of Ba1– x Pb x TiO3 at 800°C. When 0.5 μm powder was used, the two phases coexisted in the products at 600°C at PbCl2/BaTiO3= 1.0. A sintered compact of Ba1– x Pb x TiO3 powders solid solution was prepared by hot isostatic pressing, and its dielectric constant was measured in the temperature range 20°–550°C.  相似文献   

19.
Barium strontium titanate (BST, Ba x Sr1− x TiO3) powders were fabricated by reacting nanocrystalline TiO2 with aqueous alkaline solutions containing Ba and Sr at 80°C. Measurements of reaction kinetics showed that Ba-rich BST compositions exhibited more rapid reaction rates compared with Sr-rich BST compositions, and the reaction rate increased monotonically with increasing Ba content. The average particle size also increased with increasing Ba content, with the particle growth rate of BaTiO3 being approximately a factor of 10 greater than SrTiO3. The increase in growth rate from Sr-rich to Ba-rich BST corresponded to a morphological transition from 20 to 30 nm cuboidal particles to 80 nm raspberry-like particles, respectively.  相似文献   

20.
Unpolarized optical spectra were measured in the wavelength range 322–1666 nm by the diffuse reflection technique from spinel powders synthesized in the system MgAl2O4–MgCr2O4. The spectra were interpreted by the crystal-field theory on the basis of trigonally distorted spinel octahedra with D3d symmetry. For chromium-rich solid solutions, including the MgCr2O4 end-member, results after peak fittings showed octahedral D3d local symmetry around Cr3+ ions, identical to the crystallographic site symmetry. For chromium-poor solid solutions, however, octahedral C3v local symmetry was suggested around Cr3+ ions, different from the D3d crystallographically expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号