首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
利用扫描电镜(SEM)和透射电镜(TEM)研究了淬火温度对高铁车轴用钢显微组织和力学性能的影响。结果表明:随着淬火温度的升高,抗拉强度和规定塑性延伸强度先快速增大后缓慢减小,塑性变化不明显,冲击吸收能量持续下降,同时试验钢原始奥氏体晶粒长大,马氏体板条束(Packet)长大,淬火温度升高到900℃后晶粒迅速粗化,后续回火碳化物有所细化。在淬火温度为850℃时(675℃回火)试验钢具有最佳的综合性能:抗拉强度为796 MPa,规定塑性延伸强度为677 MPa,伸长率为24.5%, 25℃和-40℃的冲击吸收能量(A_(KU2)/sub,5 mm缺口)分别为82 J和72 J。  相似文献   

2.
马佳明  叶俭  王丽莲 《热处理》2012,27(2):63-65
研究了高铁车轴用35CrMo3、4CrNiMo6和40CrNiMo钢的淬透性、热处理工艺和力学性能。结果表明,34CrNiMo6钢的淬透性优于其余两种钢;三种钢的抗拉强度、屈服强度和硬度均随回火温度的升高而下降,而断后伸长率、冲击韧度随回火温度的升高而上升。  相似文献   

3.
研究了不同预处理工艺对调质处理前后ZG25CrNiMo钢组织和力学性能的影响。结果表明,ZG25CrNiMo铸钢具有粗晶组织遗传特性。单一的890℃×2 h正火预处理对组织遗传改善能力有限,通过950℃×2 h高温正火+890℃×2 h正火预处理则可以消除组织遗传特性、细化奥氏体晶粒。在两次正火基础上进行一次670℃×6 h退火处理,能细化晶粒,使钢消除残余内应力;再经调质处理后,ZG25CrNiMo钢抗拉强度达到800 MPa以上,-45℃低温冲击吸收能量达到50 J以上。  相似文献   

4.
研究了不同的淬火回火工艺对34CrNiMo6钢显微组织、硬度和韧性的影响。结果表明:淬火温度低于800℃时,随着淬火温度升高,34CrNiMo6钢的硬度逐渐升高;当淬火温度高于800℃时,随着淬火温度升高,硬度略微降低。冲击功随淬火温度升高持续降低。随着回火温度升高,34CrNiMo6钢的硬度降低,冲击功升高。经70℃淬火+620℃回火后,34CrNiMo6钢的组织为回火索氏体+铁素体,硬度和冲击功分别为35.2 HRC和111.0 J,钢的强韧性配合较佳。  相似文献   

5.
设计了一种低碳CuNiCrMnMo钢,并研究了3种热处理工艺(油淬+回火、水淬+回火和轧后直接淬火回火)条件下试验钢的组织与性能.试验钢经油淬和600 ℃回火1 h,屈服强度Rp0.2=645 MPa,抗拉强度Rm=745 MPa,-60 ℃冲击吸收能量为138 J;经水淬和650 ℃回火1 h,屈服强度Rp0.2= 668 MPa,抗拉强度Rm=721 MPa,-80 ℃下冲击吸收能量为216 J.经直接淬火和650 ℃回火1 h,达到最佳的强韧性匹配,即屈服强度Rp0.2=700 MPa,抗拉强度Rm=764 MPa,-80 ℃下冲击吸收能量为182 J.  相似文献   

6.
通过成分分析、显微组织观察、力学性能测定,对进口钎尾的组织与性能进行研究。分析了热处理工艺及参数对国产替代材料40CrNiMo钢性能的影响。结果表明:进口钎尾产品的材料为日本钢SNCM439,显微组织为细小回火索氏体,抗拉强度高达1198 MPa,冲击吸收能量为102 J;40CrNiMo经过600 ℃回火后,实现了最佳的强韧性配合;860 ℃正火+650 ℃高温回火+860 ℃淬火+600 ℃回火处理后,40CrNiMo钢的力学性能基本达到进口产品的性能要求。  相似文献   

7.
苏立武  陈玲 《金属热处理》2020,45(6):167-172
通过对轨道交通高端轴类产品车轴用35CrMoA、EA4T、EA1N、DZ2、30CrNiMoV12钢等材质,和转轴用35CrMo、40CrNi2MoA、34CrNiMo6、30CrNiMo8钢等材质热处理后的组织性能对比,对轴类零件用材料进行了优选。车轴材料对比试验结果表明,经过热处理后30CrNiMoV12钢的强韧性远高于其他材质,冲击韧性、缺口敏感性、疲劳强度是车轴材料中综合性能最优的一种,可用于受结构尺寸限制的高强度车轴或高寒条件下使用的车轴。DZ2材料次之,EA4T钢性能接近于DZ2钢,但低温冲击性能不如DZ2钢稳定。EA1N钢整体的强度只有30CrNiMoV12钢的一半。转轴材料对比试验结果表明,经过热处理后40CrNi2MoA、34CrNiMo6、30CrNiMo8钢的强韧性较好,低温冲击性能良好且稳定,30CrNiMo8钢耐疲劳强度更好,缺口敏感性更低,适用于高强度转轴和高寒条件下应用的车轴。相比之下35CrMo钢强度略低,低温冲击性能较好,略低于其他材料且稳定性有待提高。  相似文献   

8.
《热处理》2017,(2)
对高铁用35CrMo钢、40CrNiMo钢和34CrNiMo6钢淬透性、淬硬性及热处理工艺进行了试验研究。试验结果表明,三种材料中34CrNiMo6钢的淬透性最好;40CrNiMo钢淬硬性较好,但淬硬层深度较浅;35CrMo钢的淬硬性低于40CrNiMo钢,淬透性低于34CrNiMo6钢。三种钢的抗拉强度、屈服强度和硬度均随回火温度的提高而下降,而断后伸长率、冲击韧度则随回火温度的升高而上升。  相似文献   

9.
采用光学显微镜、扫描电镜、透射电镜和万能拉伸试验机等研究了含Nb和无Nb两种成分低合金海工钢经控轧控冷(TMCP)及回火工艺处理后的组织与性能,研究了回火工艺对Nb微合金化效果的影响。结果表明:经TMCP工艺和回火工艺处理后,含Nb钢平均屈服强度分别为448 MPa和491 MPa,-40℃冲击吸收能量分别为272 J和289 J,而无Nb钢平均屈服强度分别为379 MPa和470 MPa,-40℃冲击吸收能量分别为118 J和300 J。回火后,无Nb钢屈服强度提高了91 MPa,而冲击韧性更是提高了1.5倍,与含Nb钢强度和韧性的差距均得到明显缩小。因此,回火工艺对无Nb钢强韧性的提高效果更明显,而对含Nb钢强韧性的提高较小。  相似文献   

10.
对34CrNi3Mo钢压缩机叶轮进行了一系列不同的真空调质热处理工艺试验.结果表明,34CrNi3Mo钢试样经880℃氩气淬+580~ 600℃回火后,其规定塑性延伸强度为794 ~850 MPa、抗拉强度为926~ 967 MPa、伸长率为14.6%~16.5%、断面收缩率为35.7%~45.5%、冲击吸收能量为39.4 ~44.1J,满足了该叶轮力学性能的技术要求.  相似文献   

11.
采用光学显微镜、扫描电镜、X射线衍射仪、冲击试验机以及万能试验机研究了城际及高铁轨道辙叉用贝氏体钢的组织与力学性能。结果表明,试验钢在空冷条件下即可得到贝氏体组织,经XRD分析其组织为无碳化物贝氏体。试验钢的抗拉强度达到1410 MPa,室温冲击吸收能量高达89 J,硬度较高且具有较好的强韧性配比。低温冲击试验结果表明,试验钢可以满足低温环境下城际及高铁轨道辙叉的使用要求。  相似文献   

12.
针对特厚齿条用钢板的开发,通过微合金化设计、控制轧制、调质热处理等工艺,制备了两种不同成分的785 MPa级别高强韧特厚齿条钢,研究了不同回火温度下Nb、Ti对钢板微观组织和力学性能的影响。结果表明,随着回火温度的升高,试验钢板屈服强度、抗拉强度、硬度逐渐降低。NbTi钢板回火脆性区间为300~500 ℃,3Ni钢板回火脆性区间为200~550 ℃。Nb、Ti微合金化可显著细化奥氏体晶粒,增加了大角度晶界的比例和密度,从而提高了钢板的强度和冲击韧性。NbTi钢板在650 ℃回火时获得最优强韧性匹配,其屈服强度和-60 ℃冲击功分别为805 MPa和200 J;3Ni钢板在600 ℃回火时获得最优强韧性匹配,其屈服强度和-60 ℃冲击功分别为881 MPa和140 J。  相似文献   

13.
通过Cr、Mo等合金化设计出新型槽帮铸钢,利用扫描电镜、拉伸、冲击试验机及布氏硬度计等研究了新型槽帮钢在不同热处理条件下的组织与性能变化。结果表明,添加Cr、Mo等合金元素提高了钢的淬透性和回火稳定性,细化组织并促进碳化物析出,热处理后钢的强度、硬度、塑性和韧性得到明显改善。ZG-1试验钢经900、920℃淬火、500℃回火时抗拉强度为999~1002 MPa,屈服强度931~933 MPa,断后伸长率15.0%~14.0%,室温硬度296~298 HBW,冲击吸收能量61.0~63.0 J;ZG-2试验钢920℃淬火、500~520℃回火时强韧性更优异,抗拉强度1039~1011 MPa,屈服强度981~947 MPa,断后伸长率15.0%~15.3%,室温硬度305~298 HBW,冲击吸收能量64.5~67.5 J,可以满足刮板输送机中部槽材料的性能要求。  相似文献   

14.
利用X射线衍射分析(XRD)、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等研究了930℃加热空冷及930℃加热水冷-空冷交替冷却对Φ53 mm无碳化物贝氏体钢20SiMn3MoV组织和力学性能的影响。结果表明:930℃加热空冷处理后,实验钢的组织较粗大,为贝氏体铁素体(BF)和分布在贝氏体铁素体板条之间的残留奥氏体(AR)组织,晶粒度等级为6.5~7.5级,抗拉强度为1288 MPa,-40℃冲击吸收能量为22.8 J。经930℃加热水冷-空冷交替冷却处理后(先水冷到400~450℃后空冷),实验钢的组织细小,为贝氏体铁素体(BF)和分布在贝氏体铁素体板条之间的残留奥氏体(AR)组织,晶粒度等级为7.5~8.0级,抗拉强度为1393 MPa,-40℃冲击吸收能量为38.8 J,表明水冷-空冷交替冷却工艺细化了实验钢的晶粒,提高了实验钢的强度及韧性,与930℃加热空冷相比,实验钢的强度提高了8.2%,低温韧性提高了70%。  相似文献   

15.
采用780℃亚温淬火和不同温度回火,探究回火温度对40CrMoVNbTi钢组织和力学性能的影响。对淬火不同温度回火40CrMoVNbTi钢的力学性能变化及显微组织和冲击断口断貌进行观察和分析。结果表明,780℃亚温淬火,随回火温度的提高,40CrMoVNbTi钢的强度下降,塑性呈上升趋势,300℃回火冲击吸收能量值最低,出现回火脆性。200℃回火组织为回火马氏体和残留奥氏体,其抗拉强度为2150 MPa,KV2为23.8 J;550~600℃回火组织为回火索氏体,韧性较好,其抗拉强度为1190~1070 MPa,KV2为94~123 J,满足AISI 4140钢的力学性能要求,具有较高的冲击性能。  相似文献   

16.
采用扫描电镜、EDS分析、拉伸和低温冲击试验等研究了低碳舰船高强钢在固溶和不同温度时效处理后的显微组织和力学性能。结果表明:试验钢在900 ℃保温30 min固溶处理后的显微组织为多边形铁素体和贝氏体/马氏体,屈服强度和抗拉强度较低,分别为505 MPa和625 MPa。随着时效温度的升高,试验钢的强度出现了先升高后降低的变化趋势,在时效温度为500 ℃时的抗拉强度和屈服强度最高,分别为783 MPa和747 MPa,断后伸长率为11.5%,-20 ℃的冲击吸收能量为96 J。  相似文献   

17.
对淬火态中锰钢进行了不同温度的回火试验,研究了不同回火温度下逆转变奥氏体的含量和稳定性,及其对中锰钢强韧性能的影响。结果表明:当回火温度由630 ℃升高至670 ℃时,中锰钢室温组织中逆转变奥氏体体积分数由19%增加至42%,逆转变奥氏体稳定性不断降低;中锰钢的屈服强度由750 MPa降低至565 MPa,抗拉强度由845 MPa升高至970 MPa, -60 ℃冲击吸收能量由116 J减小至75 J。高体积分数、低稳定性的逆转变奥氏体会降低中锰钢的屈服强度,但会提高中锰钢的加工硬化能力。在冲击载荷作用下,组织中的逆转变奥氏体发生相变诱导塑性(Transformation-induced plasticity, TRIP)效应,显著提高裂纹形成功和裂纹扩展功,是中锰钢主要的韧化机制。  相似文献   

18.
采用SEM、XRD、TEM和Thermo-Calc软件计算等手段研究了两相区回火温度对0.02C-7Mn钢的组织和性能变化的影响。结果表明,淬火后试验钢组织以淬火马氏体为主,伴有极少量的残留奥氏体;两相区回火后,基体组织以回火马氏体为主,出现逆转变奥氏体,空冷后转变为残留奥氏体。随着回火温度的升高,残留奥氏体的含量逐渐增加,在650 ℃回火后到达峰值为18.78%;与此同时出现了6.57%的ε-马氏体。两相区回火后,试验钢的抗拉强度均有下降,但是屈服强度有不同程度的升高,这归因于回火过程中位错密度的下降以及弥散第二相的析出。另外,ε-马氏体的存在不仅迅速降低了屈服强度,而且还损害了韧性。在600 ℃回火后,试验钢具有优异的综合力学性能(横向:抗拉强度为984 MPa、屈服强度为973 MPa,-40 ℃冲击吸收能量为163 J,纵向:抗拉强度为947 MPa、屈服强度为919 MPa,-40 ℃冲击吸收能量为186 J),满足Q690用钢的力学性能需求。  相似文献   

19.
袁睿  潘中德  武会宾 《金属热处理》2021,46(10):112-116
利用扫描电镜、激光共聚焦显微镜、室温拉伸、低温冲击测试等试验方法,采用了正火、强化正火、正火+400 ℃回火的热处理工艺,研究了不同正火工艺对420 MPa级海洋风电用钢板组织和性能的影响。结果表明:通过正火处理后,正火态试验钢的平均晶粒尺寸由轧态试验钢的8 μm细化至6 μm,带状组织得到改善,强度与低温冲击性能均得到提升,屈服强度提升至442 MPa,-50 ℃下的冲击吸收能达到120 J;通过正火+400 ℃回火处理后,平均晶粒尺寸为7 μm,虽然大幅度提升了钢的低温冲击性能,-50 ℃下的冲击吸收能量达到194 J,但是钢的屈服强度降低为422 MPa。强化正火后组织为铁素体+珠光体+少量贝氏体,平均晶粒尺寸为5.6 μm,屈服强度提升至460 MPa,断后伸长率和低温冲击吸收能量相较于正火后试验钢有所降低但仍能满足EN10025性能标准,达到强韧性的最佳匹配,是生产420 MPa级海上风电用钢的最佳热处理工艺。  相似文献   

20.
当前,对铁路车辆用钢耐大气腐蚀性能的要求越来越严苛。采用高Cr成分体系和轧后两段冷却工艺,试制了Q350EWR1铁路车辆用高耐蚀钢。研究了其奥氏体连续冷却相变行为,获得了不同冷却速率下其组织演变规律。开展了轧制工艺对Q350EWR1耐蚀钢组织和性能影响的研究,并对其腐蚀性能进行了评价。结果表明,当冷速为0.1 ℃/s时,耐蚀钢组织由铁素体和珠光体组成;当冷速为0.5 ℃/s时,组织由铁素体、珠光体和少量贝氏体组成;当冷速大于1 ℃/s时,组织为单一贝氏体组织,这是由于高Cr成分提高了钢的淬透性,使得较低冷速下发生贝氏体相变而导致。研发的耐蚀钢综合力学性能优良,其屈服强度360~420 MPa,抗拉强度550~640 MPa,屈强比不大于0.66,伸长率不小于27%,-40 ℃冲击功大于280 J,耐大气腐蚀性能相对于Q345B钢的失重率小于30%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号