首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
采用浸渍-化学还原法制备了钌/膨润土(Ru/Ben)催化剂,考察了钌含量、还原剂硼氢化钠用量、还原温度以及反应条件等对Ru/Ben催化氨硼烷(NH3BH3)水解产氢的影响。结果表明,在钌负载量为0.3%(质量分数)、钌与还原剂硼氢化钠物质的量比为1∶2.5、还原温度为303 K条件下,制备的Ru/Ben中Ru微晶尺寸为3.8 nm,Ru/Ben催化NH3BH3水解产氢的转化频率(TOF)为145 mol/(mol·min);搅拌转速为450 r/min时,外扩散限制消除,产氢速率最大;产氢速率与Ru/Ben浓度成正比,催化剂界面反应是氨硼烷水解产氢反应的控速步骤,Ru/Ben催化NH3BH3水解产氢反应对催化剂浓度的反应级数为0.7;反应温度越高,氨硼烷向催化剂表面的传质速率越高、产物氢气及副产物偏硼酸钠从催化剂表面越易脱附,产氢速率越大。动力学计算表明,Ru/Ben催化NH3BH3水解产氢反应的产氢速率与氨硼烷浓度无关,活化能为15 kJ/mol。  相似文献   

2.
采用浸渍-还原法制备了Ru/SiO2催化剂,并考察了钌负载量、还原剂硼氢化钠的用量、还原温度以及反应条件对催化剂Ru/SiO2催化BH3NH3水解产氢的影响。结果表明,在钌的负载量为0.1%(质量分数)、还原剂硼氢化钠与钌的物质的量比为2.2∶1、还原温度为303 K时制备的催化剂,催化BH3NH3水解产氢速率最快[转化频率TOF为140.8 L H2/(mol Ru·min)]。搅拌转速为450 r/min时,氨硼烷向催化剂表面传质最快,产氢速率最大。氨硼烷水解反应由催化剂界面反应控制,产氢速率与催化剂用量成正比。随着反应温度的升高,Ru活化的氨硼烷分子能量增加,反应速率逐渐增加。反应动力学计算表明Ru/SiO2催化剂催化BH3NH3水解产氢反应对氨硼烷浓度为零级反应,活化能为45 kJ/mol。  相似文献   

3.
采用浸渍-还原法制备了铁、钴、镍、铜和锌催化剂,考察了其催化氨硼烷水解产氢性能,并优化了钴催化剂的制备条件和反应条件。结果发现,铁催化剂中铁以Fe2B合金相存在,钴催化剂中钴以金属钴存在,镍催化剂中镍以金属镍和Ni(OH)2·2H2O存在,铜催化剂中铜以金属铜和氧化亚铜存在,锌催化剂中锌以Zn4SO4(OH)6·4H2O存在。铁、钴、镍、铜和锌催化剂催化氨硼烷水解产氢活性由大到小顺序为钴催化剂、镍催化剂、铜催化剂、铁催化剂、锌催化剂。显然,具有金属钴相的钴催化剂、金属镍相的镍催化剂和金属铜相的铜催化剂催化氨硼烷产氢活性高于具有Fe2B合金相的铁催化剂。锌催化剂在制备条件下不能被还原为金属相,它几乎没有催化氨硼烷产氢活性。氯化钴与还原剂硼氢化钠的物质的量比为1∶1.3、还原温度为303 K时制备的钴催化剂催化BH3NH3水解产氢性能最佳。反应动力学计算表明钴催化剂催化BH3NH3水解产氢反应对氨硼烷浓度的反应级数为零级,对钴催化剂浓度的反应级数为一级,活化能为58 kJ/mol。  相似文献   

4.
《化学试剂》2021,43(8):1025-1031
金属氧化物被广泛应用于催化剂的载体,Co_3O_4作为一种金属氧化物具有弱磁性和氧化还原等特性,可被当作载体制备出高效同时高稳定性的催化剂。采用浸渍-还原法,通过改变Rh和Ni的物质的量之比制得了一系列Rh基及过渡金属Ni基负载在Co_3O_4载体上的催化剂,并对这些样品进行表征及氨硼烷(AB)水解产氢的测试。一系列表征结果证明RhNi合金已成功负载到Co_3O_4载体表面。Rh_(1.5)Ni_(0.5)/Co_3O_4表现出最优异的氨硼烷水解产氢性能,转换频率(TOF)高达1 178.85 min~(-1),相应的活化能(E_a)为66.65 kJ/mol。  相似文献   

5.
氢能是替代传统化石能源的重要清洁能源,然而实现氢能的高质量密度储存与温和条件下快速释放仍是一大瓶颈。氨硼烷储氢密度高达19.6%(质量),在室温下水解即可制得氢气,是最有发展前景的储氢材料之一。然而氨硼烷在水中放氢速度缓慢,因此开发加速其水解过程的催化剂至关重要。对氨硼烷的水解催化剂的研究主要集中在金属单质、金属化合物与光催化剂三类材料。本文从实践方面,介绍了氨硼烷水解制氢的研究方法,从理论方面,通过介绍催化剂的发展,综述了氨硼烷水解反应的步骤与机理。通过对产氢过程的深入描述,介绍了对氨硼烷水解制氢反应正面调控的方法,并依据已有的研究提出了未来该类催化剂的设计策略。  相似文献   

6.
《化学试剂》2021,43(7):865-871
氨硼烷被认为是一种理想的储氢材料,由于氨硼烷本身不仅稳定无毒,而且还具有较高的氢含量,因此关于氨硼烷水解析氢研究引起广泛关注。选择在CeO_2载体上原位还原制备一系列RhCu/CeO_2双金属催化剂,并通过XRD、SEM、EDS、XPS、TEM、ICP-OES等测试方法表征催化剂的组成及结构,并在298 K条件下将其作为氨硼烷水解的催化剂进行测试。结果表明,当n(Rh)∶n(Cu)=3∶1时,制备的双金属催化剂Rh_(1.5)Cu_(0.5)/CeO_2对氨硼烷水解析氢表现出最高的催化活性,反应的活化能Ea低至31.97 kJ/mol,转化效率TOF值为300.48 min~(-1),这说明双金属合金催化剂在氨硼烷水解析氢方面具有潜在的应用前景。  相似文献   

7.
张帅  王斯瑶  姜召  方涛 《化工进展》2019,38(7):3194-3206
氨硼烷由于其氢质量分数高达19.6%,在环境条件下稳定性高,无毒,在普通溶剂中溶解度高,因此被视为是一种极具潜力的固体储氢材料。但是传统纳米金属催化剂颗粒容易出现团聚、损失、二次污染、难回收的问题。高压静电纺丝技术将微纳米纤维作为纳米金属颗粒的载体,制备出的催化剂可以有效弥补传统纳米金属催化剂的缺点。本文从静电纺丝技术、纳米纤维的分类、催化剂的分类3个角度重点介绍了静电纺丝法制备应用于氨硼烷水解的纳米催化剂。在纳米纤维的分类中详细介绍了应用电纺技术制备不同种类纤维的制作步骤和关键技术点;在催化剂的分类中全面详细介绍了贵金属以及非贵金属催化剂的制备工艺,对比两种催化剂制备的优缺点,总结出了催化剂颗粒以及载体的选择依据。最后分别提出通过技术设备的升级优化、催化颗粒与载体的合理设计、“三步”化学反应的方法来解决电纺技术效率低、催化性能差、氨硼烷再生难的问题。  相似文献   

8.
随着化石能源的消耗,新型清洁能源的开发迫在眉睫。氢能源因其燃烧性能好,且产物为水、无污染而备受关注。目前,氨硼烷(AB,NH_3BH_3)作为一种固体储氢材料已经引起了广泛的研究兴趣。氨硼烷分子量较轻,理论储氢密度高达19.6 wt%,其水解产氢反应条件温和、速率可控,且气体产物仅为氢气,因此氨硼烷作为一种质轻、无毒、环保的固体储氢材料具有非常好的应用前景。本文主要分析了目前几种常见的不同结构催化剂对于AB水解产氢效果的影响,最后对AB催化产氢研究方向进行了展望,以期为提高AB催化产氢效率提供借鉴。  相似文献   

9.
李燕  邓雨真  俞晶铃  黎四芳 《化工进展》2019,38(12):5330-5338
氨硼烷具有储氢密度高(152.9g/L)、放氢条件温和、无毒以及常温下为稳定的固体而易于储运等特点而成为最有前景的储氢材料之一。本文综述了近年来氨硼烷在不同催化剂作用下,通过热解、醇解和水解这3种方式制氢以及分解后的副产物循环再生氨硼烷的研究进展。分析讨论了氨硼烷的热解制氢研究主要集中在降低温度和抑制气态副产物的生成这两方面,而水解或醇解制氢的研究热点是二元或三元非贵金属纳米核壳或负载型催化剂。与氨硼烷的热解相比,水解或醇解由于条件温和、制氢速度快而更具实用性。指出氨硼烷作为储氢材料最大的挑战是其再生问题,氨硼烷分解脱氢后的副产物不能直接氢化而再生氨硼烷,需要通过一系列反应来进行间接的离线再生,因此氨硼烷的再生将是今后的重点研究方向。  相似文献   

10.
《应用化工》2016,(9):1642-1645
采用浸渍法制备了碱性载体CeO_2负载的Ru催化剂(Ru/CeO_2),对催化剂进行了X射线衍射、X射线光电子能谱、透射电镜、氮气吸附等表征,考察了反应温度、氢气压力、催化剂用量和甘油溶液浓度对Ru/CeO_2催化甘油氢解反应性能的影响,评价了催化剂的循环使用性能。结果表明,当催化剂用量为50 mg,甘油水溶液浓度为20%(质量分数)时,在180℃和4 MPa的温和反应条件下,1,2-丙二醇的收率可达53.0%。Ru/CeO_2的稳定性也较好。  相似文献   

11.
《应用化工》2022,(9):1642-1645
采用浸渍法制备了碱性载体CeO_2负载的Ru催化剂(Ru/CeO_2),对催化剂进行了X射线衍射、X射线光电子能谱、透射电镜、氮气吸附等表征,考察了反应温度、氢气压力、催化剂用量和甘油溶液浓度对Ru/CeO_2催化甘油氢解反应性能的影响,评价了催化剂的循环使用性能。结果表明,当催化剂用量为50 mg,甘油水溶液浓度为20%(质量分数)时,在180℃和4 MPa的温和反应条件下,1,2-丙二醇的收率可达53.0%。Ru/CeO_2的稳定性也较好。  相似文献   

12.
采用浸渍-化学还原法制备了硼化钴/二氧化硅(CoB/SiO2)催化剂,并考察了其催化硼氢化钠水解制氢的性能。研究了二氧化硅粒径、硝酸钴与二氧化硅物质的量比、硝酸钴与硼氢化钠物质的量比等条件对催化剂性能的影响,进而考察了催化剂用量、搅拌转速、反应温度等条件对硼氢化钠水解制氢性能的影响。结果表明,在二氧化硅粒径为15 nm、硝酸钴与二氧化硅物质的量比为0.08∶1、硝酸钴与硼氢化钠物质的量比为1∶5条件下,制备的催化剂催化硼氢化钠水解产氢的速率为45.6 mL/(min·g);因为催化剂粒径很小,伴随硼氢化钠水解产氢产生的动量可以完全消除外扩散速率的影响,搅拌转速对硼氢化钠水解速率的影响很小,硼氢化钠的水解速率随着催化剂用量的增加而增大;随着温度的升高,硼氢化钠的水解速率增大,硼氢化钠水解反应的表观活化能为48.54 kJ/mol,硼氢化钠反应级数为零;催化剂具有良好的重复使用性能和稳定性。  相似文献   

13.
通过超声辅助NaBH4还原法制备了3%Ru/CN催化剂(Ru的质量分数),该催化剂用于对苯二甲酸二甲酯(DMT)加氢制备1,4-环己烷二甲酸二甲酯(DMCD)。采用Raman、SEM、TEM、N2吸脱附、XRD、XPS等对载体和催化剂的组成、表面性质进行表征,结果表明,氮元素成功掺入碳骨架中且氮掺杂碳材料为介孔结构。研究了催化剂的用量、反应温度、H2 压力、反应时间等对催化剂加氢性能的影响。结果表明,当反应物用量为1.00 g,催化剂(含载体)用量为0.05 g,反应温度140 ℃,反应压力5.0 MPa,反应时间1 h时,DMT转化率为100%,DMCD选择性为99.3%。3%Ru/CN-1000催化剂循环使用5次后,催化剂催化性能未见明显下降,DMT转化率为98.8%,DMCD选择性为99.7%。  相似文献   

14.
将水洗处理的椰壳活性炭研磨至小于0.08 mm,加入粘合剂挤压成长度3~10 mm、3~5 mm的圆柱形,颗粒经120 ℃烘干、1 900 ℃高温处理和400 ℃经氧、氮等混合气处理后,作为Ru/AC催化剂载体。其侧压强度从无定形的40 N·cm-1提高到成形后的91 N·cm-1,磨耗率从无定形的5%左右降低到成形后的0.05%。以成形椰壳炭为载体的Ru/AC催化剂的活性与无定形活性炭为载体时相当,具有在低温、低压、低氢氮比和原料气高氨含量下高活性的特点,且具有很好的耐热性。与无定形椰壳炭相比,以成形椰壳炭为载体制备的Ru/AC氨合成催化剂更适合工业氨合成装置使用。  相似文献   

15.
采用浸渍负载-还原法制备了钴-硼/二氧化锆催化剂,研究了催化剂在催化硼氢化钠水解制氢中的性能。研究了催化剂的制备条件(钴与二氧化锆物质的量比、钴与硼氢化钠物质的量比)对其催化性能的影响,并考察了催化剂用量、反应温度、搅拌转速对硼氢化钠水解制氢的影响。结果表明,在钴与二氧化锆物质的量比为0.16:1、钴与硼氢化钠物质的量比为1:5条件下制备的钴-硼/二氧化锆催化剂催化硼氢化钠水解制氢的速率最快。硼氢化钠水解制氢速率随催化剂用量的增加和反应温度的升高而增大,随搅拌转速的增加呈现先增大后减小的趋势。反应动力学计算出钴-硼/二氧化锆催化剂催化硼氢化钠水解对硼氢化钠的浓度属于零级反应。钴-硼/二氧化锆催化剂的硼氢化钠水解反应活化能为43.97 kJ/mol。  相似文献   

16.
以不同硅铝比的HZSM-5为载体,采用化学还原法与沉淀法制备了负载型Ru/HZSM-5催化剂。通过XRD与TEM对催化剂进行了表征。系统考察了制备方法、硅铝摩尔比、温度、氢气压力、时间和Ru负载量对对苯二酚加氢的影响。由于化学还原法制备的催化剂中Ru粒径较小且分散均匀,得到了含有少量硼的非晶态钌硼合金,其催化性能明显优于沉淀法制备的Ru/HZSM-5催化剂。最佳优化反应条件为:硅铝摩尔比为740,反应时间为2.5 h,反应温度为140℃,氢气压力为2.5 MPa,Ru质量分数为1.0%,此时,对苯二酚转化率为100%,目标产物1,4-环己二醇选择性为90.13%。最后,对该催化体系下对苯二酚加氢的反应路径进行了分析。  相似文献   

17.
采用化学还原法制备了三元非晶态Co-Cr-B纳米催化剂。采用透射电镜(TEM)、扫描电镜(SEM)、X射线衍射仪(XRD)等测试方法对催化剂的形貌、结构、成分做了表征。通过排水法进行NaBH4溶液水解产氢反应,测量了催化剂的催化性能。结果表明,当掺杂少量的Cr时,催化剂的粒径明显减小,比表面积明显增大,催化剂的性能提高。过量的Cr会导致出现过多的氧化物和Cr 3+,覆盖了催化剂表面活性位点,降低催化剂的性能。当Cr与Co物质的量比为0.005时,催化剂性能最佳。与纯Co-B相比,其对硼氢化钠水解产氢速率提高了2倍。此外,研究了催化剂用量、NaBH4浓度、反应温度、NaOH浓度等因素对NaBH4溶液水解产氢反应的影响。  相似文献   

18.
采用气相氧化方法对纳米碳纤维(CNFs)的表面进行改性,利用X射线衍射(XRD)、N_2物理吸附、Boehm酸碱滴定、CO化学吸附和程序升温还原等手段表征了不同温度气相氧化处理的CNFs载体及相应的负载Ru催化剂,并考察了Ru/CNFs催化剂在山梨醇氢解制备低碳多元醇过程中的催化性能。结果表明。气相氧化预处理对CNFs的晶体结构影响较小,但是大大增加了CNFs比表面积和表面酸性含氧基团;经气相氧化处理的CNFs负载的Ru催化剂更易还原,Ru金属分散度增加。催化剂考评结果表明,载体的气相氧化处理对Ru/CNFs催化剂在山梨醇氢解过程中反应活性的提高不利,但有利于低碳多元醇产物选择性的提高。研究认为CNFs表面酸性含氧基团是决定Ru/CNFs催化剂在山梨醇氢解过程催化性能的主要因素。  相似文献   

19.
张谭  刘光  李晋平  孙予罕 《化工学报》2023,(6):2264-2280
氨是重要的化学品以及理想的能源载体,人工合成氨主要来源于高能耗的Haber-Bosch(H-B)工艺。相比而言,电催化合成氨以N2和H2O为原料,实现了温和条件下产氨。Ru基催化剂在氮还原(NRR)过程中表现出优异的催化活性,但由于较为稀缺限制了其发展。基于此,首先概述了NRR的反应机制并对现有的Ru基合成氨电催化剂进行了系统的介绍;详细分析了性能提升策略(结构调控、表/界面工程、缺陷工程),如何调控活性组分或电子结构,进而提升催化剂的性能;最后分析了Ru基催化剂所面临的挑战。旨在通过Ru基催化剂性能提升策略,实现贵金属Ru的高效利用,并为其他NRR催化剂的开发设计提供指导。  相似文献   

20.
以光水解制氢中的优势材料硫化镉(CdS)作为光催化剂,借助碳化树脂(CPR)材料的导电性质,制备碳化树脂/硫化镉(CPR/CdS)复合催化剂,对CPR/CdS催化剂的理化性质和催化机理进行分析。与纯CdS相比,CPR/CdS具有更高的比表面积。通过光催化降解水产氢确定CPR的最佳用量和产氢性能。结果表明:0.5-CPR/CdS催化剂用量为0.15 g,体系pH值为5时,光催化产氢速率最高,为403.24μmol/h,循环5次实验光催化产氢速率均可以达到370μmol/h左右,稳定性良好。在复合材料中引入CPR后,CPR的掺入不仅能够提供活性位点,还能够作为电子捕获剂和电子传输剂有效分离光生电子和空穴,从而大幅度延长光生载流子的寿命,达到提高光催化反应活性的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号