首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Scanning electron microscopy/energy dispersive X‐ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the “k‐ratio” (unknown/standard) measurement protocol development for electron‐excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X‐ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high‐throughput silicon drift detector energy dispersive X‐ray spectrometer (SDD‐EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X‐ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. SCANNING 35: 141‐168, 2013. 1 Published 2012 Wiley Periodicals, Inc.  相似文献   

2.
In this study, we compare two evolving techniques for obtaining high‐resolution 3D anatomical data of a mouse specimen. On the one hand, we investigate cryotome‐based planar epi‐illumination imaging (cryo‐imaging). On the other hand, we examine X‐ray phase‐contrast micro‐computed tomography (micro‐CT) using synchrotron radiation. Cryo‐imaging is a technique in which an electron multiplying charge coupled camera takes images of a cryo‐frozen specimen during the sectioning process. Subsequent image alignment and virtual stacking result in volumetric data. X‐ray phase‐contrast imaging is based on the minute refraction of X‐rays inside the specimen and features higher soft‐tissue contrast than conventional, attenuation‐based micro‐CT. To explore the potential of both techniques for studying whole mouse disease models, one mouse specimen was imaged using both techniques. Obtained data are compared visually and quantitatively, specifically with regard to the visibility of fine anatomical details. Internal structure of the mouse specimen is visible in great detail with both techniques and the study shows in particular that soft‐tissue contrast is strongly enhanced in the X‐ray phase images compared to the attenuation‐based images. This identifies phase‐contrast micro‐CT as a powerful tool for the study of small animal disease models.  相似文献   

3.
Several dedicated commercial lab‐based micro‐computed tomography (μCT) systems exist, which provide high‐resolution images of samples, with the capability to also deliver in‐line phase contrast. X‐ray phase contrast is particularly beneficial when visualizing very small features and weakly absorbing samples. The raw measured projections will include both phase and absorption effects. Extending our previous work that addressed the optimization of experimental conditions at the commercial ZEISS Xradia 500 Versa system, single‐distance phase‐contrast imaging is demonstrated on complex biological and material samples. From data captured at this system, we demonstrate extraction of the phase signal or the correction of the mixed image for the phase shift, and show how this procedure increases the contrast and removes artefacts. These high‐quality images, measured without the use of a synchrotron X‐ray source, demonstrate that highly sensitive, micrometre‐resolution imaging of 3D volumes is widely accessible using commercially advanced laboratory devices.  相似文献   

4.
We present in this study results from X‐ray tomographic microscopy with synchrotron radiation performed both in attenuation and phase contrast modes on a limestone sample during two stages of water drying. No contrast agent was used in order to increase the X‐ray attenuation by water. We show that only by using the phase contrast mode it is possible to achieve enough water content change resolution to investigate the drying process at the pore‐scale. We performed 3D image analysis of the time‐differential phase contrast tomogram. We show by the results of such analysis that it is possible to obtain a reliable characterization of the spatial redistribution of water in the resolved pore system in agreement with what expected from the theory of drying in porous media and from measurements performed with other approaches. We thus show the potential of X‐ray phase contrast imaging for pore‐scale investigations of reactive water transport processes which cannot be imaged by adding a contrast agent for exploiting the standard attenuation contrast imaging mode.  相似文献   

5.
Soft X‐ray microscopy has excellent characteristics for imaging cells and subcellular structures. In this paper, the yeast strain, Candida utilis, was imaged by soft X‐ray microscopy and three‐dimensional volumes were reconstructed with the SART‐TV method. We performed segmentation on the reconstruction in three dimensions and identified several types of subcellular architecture within the specimen cells based on their linear absorption coefficient (LAC) values. Organelles can be identified by the correlation between the soft X‐ray LAC values and the subcellular architectures. Quantitative analyses of the volume ratio of organelles to whole cell in different phases were also carried out according to the three‐dimensional datasets. With such excellent features, soft X‐ray imaging has a great influence in the field of biological cellular and subcellular research.  相似文献   

6.
The Cobalt Oxide and Calcium‐Aluminum Oxide nano‐catalysts were analyzed using Scanning Electronic Microscopy (SEM), X‐ray diffraction (XRD), and dispersive X‐ray spectroscopy (EDX) techniques. Preliminary results showed that the particles of Cobalt Oxide exhibit sponge like morphology and homogenous distribution as per confirmation via SEM. Its average particle size ranges to 30.6 nm demonstrating enormous number of pores and aggregative in nature. Its various peaks were ranging from 19.2 to 65.4 after XRD analysis. The highest intensity was observed at 36.9 position. The energy dispersive spectroscopy techniques were used to calculate the elements present in sample according to their weight and atomic percentage. The cobalt oxide contain cobalt as the most abundant element with 46.85 wt% and 18.01 atomic percent. It contain oxygen with 30.51 wt% and 43.19 atomic percent. Whereas, SEM of calcium aluminum oxide showed random morphology. According to the calculation of Scherrer equation regarding XRD analysis, it was distributed homogenously with particle size ranges from 30 to 40 nm. Its porous morphology was due to the interconnecting gaps between different particles. It result the eight peaks ranging from 18.1 to 62.7 in XRD spectrum. The highest intensity observed at 35.1 with average crystallite particle size of 25.6 nm. The calcium aluminum oxide contain aluminum 7.45 wt% and 6.93 atomic percent. The calcium was the most abundant element with54.7 wt% and 34.24 atomic percent followed by oxygen with 37.26 wt% and 58.42 atomic percent. It was concluded that the SEM, XRD, and EDX are the most significant techniques to characterize nano‐catalysts in particular and other compounds generally.  相似文献   

7.
X‐ray computed tomography is a strong tool that finds many applications both in medical applications and in the investigation of biological and nonbiological samples. In the clinics, X‐ray tomography is widely used for diagnostic purposes whose three‐dimensional imaging in high resolution helps physicians to obtain detailed image of investigated regions. Researchers in biological sciences and engineering use X‐ray tomography because it is a nondestructive method to assess the structure of their samples. In both medical and biological applications, visualization of soft tissues and structures requires special treatment, in which special contrast agents are used. In this detailed report, molecule‐based and nanoparticle‐based contrast agents used in biological applications to enhance the image quality were compiled and reported. Special contrast agent applications and protocols to enhance the contrast for the biological applications and works to develop nanoparticle contrast agents to enhance the contrast for targeted drug delivery and general imaging applications were also assessed and listed.  相似文献   

8.
X‐ray phase tomography aims at reconstructing the 3D electron density distribution of an object. It offers enhanced sensitivity compared to attenuation‐based X‐ray absorption tomography. In propagation‐based methods, phase contrast is achieved by letting the beam propagate after interaction with the object. The phase shift is then retrieved at each projection angle, and subsequently used in tomographic reconstruction to obtain the refractive index decrement distribution, which is proportional to the electron density. Accurate phase retrieval is achieved by combining images at different propagation distances. For reconstructions of good quality, the phase‐contrast images recorded at different distances need to be accurately aligned. In this work, we characterise the artefacts related to misalignment of the phase‐contrast images, and investigate the use of different registration algorithms for aligning in‐line phase‐contrast images. The characterisation of artefacts is done by a simulation study and comparison with experimental data. Loss in resolution due to vibrations is found to be comparable to attenuation‐based computed tomography. Further, it is shown that registration of phase‐contrast images is nontrivial due to the difference in contrast between the different images, and the often periodical artefacts present in the phase‐contrast images if multilayer X‐ray optics are used. To address this, we compared two registration algorithms for aligning phase‐contrast images acquired by magnified X‐ray nanotomography: one based on cross‐correlation and one based on mutual information. We found that the mutual information‐based registration algorithm was more robust than a correlation‐based method.  相似文献   

9.
A robust and versatile sample preparation technique for the fabrication of cylindrical pillars for imaging by X‐ray nano‐computed tomography (nano‐CT) is presented. The procedure employs simple, cost‐effective laser micro‐machining coupled with focused‐ion beam (FIB) milling, when required, to yield mechanically robust samples at the micrometre length‐scale to match the field‐of‐view (FOV) for nano‐CT imaging. A variety of energy and geological materials are exhibited as case studies, demonstrating the procedure can be applied to a variety of materials to provide geometrically optimised samples whose size and shape are tailored to the attenuation coefficients of the constituent phases. The procedure can be implemented for the bespoke preparation of pillars for both lab‐ and synchrotron‐based X‐ray nano‐CT investigations of a wide range of samples.  相似文献   

10.
Purpose: This study evaluated and compared in vitro the microstructure and mineral composition of permanent and deciduous teeth's dental enamel. Methods: Sound third molars (n = 12) and second primary molars (n = 12) were selected and randomly assigned to the following groups, according to the analysis method performed (n = 4): Scanning electron microscopy (SEM), X‐Ray diffraction (XRD) and Energy dispersive X‐ray spectrometer (EDS). Qualitative and quantitative comparisons of the dental enamel were done. The microscopic findings were analyzed statistically by a nonparametric test (Kruskal‐Wallis). The measurements of the prisms number and thickness were done in SEM photomicrographs. The relative amounts of calcium (Ca) and phosphorus (P) were determined by EDS investigation. Chemical phases present in both types of teeth were observed by the XRD analysis. Results: The mean thickness measurements observed in the deciduous teeth enamel was 1.14 mm and in the permanent teeth enamel was 2.58 mm. The mean rod head diameter in deciduous teeth was statistically similar to that of permanent teeth enamel, and a slightly decrease from the outer enamel surface to the region next to the enamel‐dentine junction was assessed. The numerical density of enamel rods was higher in the deciduous teeth, mainly near EDJ, that showed statistically significant difference. The percentage of Ca and P was higher in the permanent teeth enamel. Conclusions: The primary enamel structure showed a lower level of Ca and P, thinner thickness and higher numerical density of rods. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
A graphical method for phase analysis of advanced materials by EDS–SEM was developed and demonstrated on deformed superconducting Bi(Pb)2223 ceramics. Through visual representation, this method allows for the rapid and efficient analysis of large X‐ray microanalysis datasets and to identify phase composition of fine particles of secondary phases against a background of other phases. The graphical method can be applied using existing software and therefore does not require the development of new programs or complex computations.  相似文献   

12.
Theoretical approaches to quantify the chemical composition of bulk and thin‐layer specimens using energy‐dispersive X‐ray spectroscopy in a transmission electron microscope are compared to experiments investigating (In)GaAs and Si(Ge) semiconductors. Absorption correctors can be improved by varying the take‐off angle to determine the depth of features within the foil or the samples thickness, or by definition of effective k‐factors that can be obtained from plots of k‐factors versus foil thickness or, preferably, versus the K/L intensity ratio for a suitable element. The latter procedure yields plots of self‐consistent absorption corrections that can be used to determine the chemical composition, iteratively for SiGe using a set of calibration curves or directly from a single calibration curve for InGaAs, for single X‐ray spectra without knowledge of sample thickness, density or mass absorption coefficients.  相似文献   

13.
In this paper, the use of lithium fluoride (LiF) as imaging radiation detector to analyse living cells by single‐shot soft X‐ray contact microscopy is presented. High resolved X‐ray images on LiF of cyanobacterium Leptolyngbya VRUC135, two unicellular microalgae of the genus Chlamydomonas and mouse macrophage cells (line RAW 264.7) have been obtained utilizing X‐ray radiation in the water window energy range from a laser plasma source. The used method is based on loading of the samples, the cell suspension, in a special holder where they are in close contact with a LiF crystal solid‐state X‐ray imaging detector. After exposure and sample removal, the images stored in LiF by the soft X‐ray contact microscopy technique are read by an optical microscope in fluorescence mode. The clear image of the mucilaginous sheath the structure of the filamentous Leptolyngbya and the visible nucleolus in the macrophage cells image, are noteworthiness results. The peculiarities of the used X‐ray radiation and of the LiF imaging detector allow obtaining images in absorption contrast revealing the internal structures of the investigated samples at high spatial resolution. Moreover, the wide dynamic range of the LiF imaging detector contributes to obtain high‐quality images. In particular, we demonstrate that this peculiar characteristic of LiF detector allows enhancing the contrast and reveal details even when they were obscured by a nonuniform stray light.  相似文献   

14.
Radiation beam interface contrast X‐ray microscopy provides resolution of a few dozen nanometers from fixed whole muscle biopsies, allowing better reconstruction of the microstructure of the muscle than is currently possible with classic histological techniques. Fixed soleus muscle biopsies have been evaluated from the walk‐in mouse model using phase‐contrast X‐ray microscopy, and results presented that corroborate the accuracy of the method used, and its potential for application in physiotherapy and occupational therapy studies. We believe that this method will enhance existing morphometric methods of analysis, leading to accurate reconstruction of other thick specimens that would otherwise require thin sectioning and reconstruction through deconvolution algorithms.  相似文献   

15.
X‐ray microcomputed tomography (μCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon‐carbon fibre composites, nuclear‐grade graphite and tristructural isotropic‐coated fuel particles. Local cracks in carbon‐carbon fibre composites associated with their synthesis process were observed with μCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high‐resolution μCT can be used to probe internal layer defects of tristructural isotropic‐coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 to 5 μm and up could be isolated by tomography. As an added advantage, μCT could also be used to identify regions with high densities of radioisotopes to determine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. In fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic‐coated particles embedded in a silicon carbide matrix was accomplished using μCT and related advanced image analysis techniques.  相似文献   

16.
A combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning‐transmission electron microscopy (STEM) using high‐angle annular‐dark‐field (HAADF) imaging, focussed ion beam‐ scanning electron microscopy (FIB‐SEM) tomography, selected area electron diffraction with beam precession (PED), as well as spatially resolved energy‐dispersive X‐ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS), was used to investigate topologically close‐packed (TCP) phases, occurring in the CMSX‐4 superalloy subjected to high temperature annealing and creep deformation. Structural and chemical analyses were performed to identify the TCP phases and provide information concerning the compositional partitioning of elements between them. The results of SEM and FIB‐SEM tomography revealed the presence of merged TCP particles, which were identified by TEM and PED analysis as coprecipitates of the μ and P phases. Inside the TCP particles that were several micrometres in size, platelets of alternating μ and P phases of nanometric width were found. The combination of STEM‐HAADF imaging with spatially resolved EDS and EELS microanalysis allowed determination of the significant partitioning of the constituent elements between the μ and P phases.  相似文献   

17.
This paper introduces an original application on reconstruction strategies for X‐ray computed microtomography, enabling the observation of time‐dependent changes that occur during multiphase flow. In general, by sparsely collecting radiographs, the reconstruction of the object is compromised. Optimizations can be achieved by combining specific characteristics of the dynamics with the acquisition. Herein, the proposed method relies on short random intervals in which no drastic changes occur in the sample to acquire as many radiographs as possible that constitute a reconstructible data set. As these intervals are unpredictable, the method tries to guarantee that the collected radiograph data during these specific intervals are enough to recover useful information about the dynamics. Simulations of a percolating fluid in a digital rock are used to replicate an X‐ray computed microtomography experiment to test the proposed method. The results demonstrate the potential of the proposed strategy for imaging multiphase flow in porous media and how data collected during distinct events can be combined to enhance the reconstruction of frames of the percolation process.  相似文献   

18.
X‐ray microtomography from cold‐sprayed coatings brings a new insight on this deposition process. A noise‐tolerant segmentation algorithm is introduced, based on the combination of two segmentations: a deterministic multiscale segmentation and a stochastic segmentation. The stochastic approach uses random Poisson lines as markers. Results on a X‐ray microtomographic image of aluminium particles are presented and validated.  相似文献   

19.
Three‐dimensional (3D) printing technology has the advantage of enabling specific visualization of creative ideas. Since synchrotron based images can provide high sensitivity and high resolution, they are a very useful technology to identify the 3D anatomy of microscale samples. X‐ray images using such synchrotron radiation are grafted to 3D printing technology. We can be obtained 3D images and modeling data of an ant using synchrotron radiation, and then, it were outputted with the 3D printer. A new way to identify the usefulness of the structure analysis is then found by visualizing the micro‐internal structure of diverse biomedical samples and creating an enlarged model. This study suggests methods of utilizing a 3D printed model produced through synchrotron radiation imaging in various fields such as bioengineering, medical, and education.  相似文献   

20.
This study is related to the application of the X‐ray dual‐energy microradiography technique together with the atomic absorption spectroscopy (AAS) for the detection of lead on Zea mays stem, ear, root, and leaf samples. To highlight the places with lead intake, the planar radiographs taken with monochromatic X‐ray radiation in absorption regime with photon energy below and above the absorption edge of a given chemical element, respectively, are analyzed and processed. To recognize the biological structures involved in the intake, the dual‐energy images with the lead signal have been compared with the optical images of the same Z. mays stem. The ear, stem, root, and leaf samples have also been analyzed with the AAS technique to measure the exact amount of the hyperaccumulated lead. The AAS measurement revealed that the highest intake occurred in the roots while the lowest in the maize ears and in the leaf. It seems there is a particular mechanism that protects the seeds and the leaves in the intake process. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc. This article was published online on 1 December 2009. An error was subsequently identified. This notice is included in the online and print version to indicate that both have been corrected 19 February 2010.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号