首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
对磨牙冠结构特性、加工刀轨特点以及四轴联动雕刻机旋转轴特性进行分析,在此基础上提出其四轴联动加工的后置处理算法.在该算法基础上,利用Visual C++6.0软件开发出单独的后置处理程序,将加工刀轨的刀位文件处理生成ISO格式的G代码文件.为了验证后置处理程序的正确性,利用数控仿真软件Vericut 7.0建立四轴联动雕刻机的仿真模型,对后置处理程序生成的G代码文件进行仿真.仿真结果表明,后置处理程序符合预期要求.  相似文献   

2.
Nomex蜂窝复合材料的超声切割技术克服了传统高速铣削中存在的工件固持困难、加工粉尘大等问题。基于断裂力学研究Nomex蜂窝复合材料的超声切割机理,为超声切割工艺参数优化以及超声波声学主轴的优化设计提供理论依据。根据直刃刀超声切割Nomex蜂窝复合材料加工工艺,建立直刃刀的运动学方程,分析得到超声切割断续加工过程中直刃刀与材料相互作用时间关系;应用断裂力学理论,引入动态应力强度因子建立蜂窝复合材料的断裂韧性模型,研究超声切割作用下蜂窝复合材料的微观断裂过程,根据直刃刀位移和裂纹扩展的关系模型,分析切削力的影响因素,并进行仿真研究。研制了超声切割工艺试验台,对蜂窝复合材料进行了有超声和无超声切割加工的对比试验,试验结果显示超声切割显著地减小了切削力,也证实了冲击产生的微裂纹扩展是蜂窝复合材料在直刃刀超声切割作用下,切割力减小的主要原因。理论分析和试验研究表明基于断裂力学的Nomex蜂窝复合材料超声切割机理研究具有有效性和合理性。  相似文献   

3.
The postprocessor is an important interface that transforms cutter location data into machine control data, and in a five-axis machine tool is highly complex because the simultaneous linear and rotary motions occur. Since most works of the five-axis postprocessor method have dealt only with the orthogonal machine tool’s configuration, this study presents a postprocessor scheme for two types of five-axis machine tools, each with a nutating head and a table whose rotational axes are in an inclined plane. The benefit of such a configuration is that it allows switching from vertical to horizontal machining by a single machine. The general analytical equations of NC data are obtained from the forward and inverse kinematics and the homogeneous coordinate transformation matrix. The linearization algorithm for the postprocessor is developed to ensure the machining accuracy. The presented algorithm is implemented using a window-based five-axis postprocessor with nutating axes, and programmed in Borland C++ Builder and OpenGL. A simulation is performed using solid cutting software and a trial-cut experiment was conducted on a five-axis machine tool with a nutating table to elucidate the accuracy of the proposed scheme.  相似文献   

4.
This research deals with tool compensation and postprocessor development for numerical control application. The content consists of three main activities. First, derives a cutting location expression of the tool for compensation and machining stability use. Second, establishes an analytical methodology to develop a kinematics transformation algorithm (KTA) for the specific type machine with a swivel spindle head and two rotary tables. And last, defines correspondent between workpiece and the cutter to attain the aim of three-dimensional tool compensation and presents postprocessors under KTA for two types of five-axis machine centers in examples.  相似文献   

5.
A turbine blade has complex shaped free-form surfaces that can be modelled as surfaces with variable curvature by high-degree polynomials. Industry typically utilizes a turnkey system and special-purpose machine tool to manufacture turbine blades. A turkey system is a closed form design. Users need only input relevant data to this system to manufacture the product directly. However, users are unaware of the internal operation of the system. With rapidly advances in computing technology, commercial CAD/CAM systems can be utilized to design freeform surfaces and generate a tool path for the designed surfaces. This study uses a reverse engineering technology that is used to reconstruct the CAD model for a turbine blade. The prototype is measured by a coordinate measuring machine to obtain the geometrical control data points that are used to generate the CAD model in the UniGraphics (UG) CAD/CAM system. The UG/GRIP (GRaphics interactive Programming) language is used to generate the cutter location data rather than using the default UG CAM module. A five-axis NC code is acquired by the developed postprocessor and verified by the solid cutting simulation software VERICUT®. Real turbine blade machining is performed on a table/spindle tilting five-axis machine tool, demonstrating the effectiveness of the proposed approach.  相似文献   

6.
The rotation joints of a five-axis machine tool can offer freedom and appropriate rotation to prevent interference problem between workpiece and the cutter. However, to a five-axis machine tool, it is quite difficult to determine the collision-free cutter orientation. Over this problem, a two-stage cutting tool collision check method is proposed to prevent the collision problem during the cutting process on a five-axis machine tool. The proposed method is capable of determining the collision free ball-end cutter orientation automatically. The first stage is to obtain the tilting and collision-free angle range in the plane that is normal to the tool path obtained. Next, a checking cone generated from this collision-free tool axis range is used for the second collision check. The collision region is formed by the intersection of the neighboring surfaces. This implies a collision-free yaw angle range. The final cutting tool orientation is determined automatically by referring the original spindle axis and the least angular variation from the spindle axis. Finally, the implementation issue is discussed with example.  相似文献   

7.
深入分析了空间刀具半径补偿矢量的计算方法,对实现该空间刀补矢量到五轴联动数控系统中做了算法的准备和验证,并以UG NX6.0生成的刀位文件(CLSF)为坐标数据来源和五轴联动A/C双转台机床为例,开发了一个专用后置处理软件,并通过在Vericut7.0上模拟和五轴联动机床上实际加工叶片,加工结果说明了该算法的正确性和软件的实用性。  相似文献   

8.
在五轴加工编程中,计算机辅助制造系统对曲面加工通常采用以折代曲,采用大量的微小G01直线段来加工曲面,在曲率半径较大的工件表面会出现明显折痕,严重影响工件表面的加工质量。为提高五轴数控加工工件的表面质量,提出一种五轴微段平滑插补算法。该算法考虑五轴加工中刀位数据的量纲差异,根据相邻数据点间的线性轴长度、线性轴的夹角和旋转轴角度变化量识别五轴数控加工程序中非连续微段和连续微段加工区域。对非连续微段加工区域按照原始直线段和旋转轴直接插补,从而保证加工精度。对连续微段加工区域,先通过五维变量获取节点参数,采用最小二乘法对指令点在允许的精度范围内进行修正;对修正后的指令点采用4点构造法计算二阶切矢,根据连续微段的指令点修正值,节点参数值和对应的二阶切矢值获取二阶连续的三次样条曲线;在二阶连续平滑的曲线上进行实时插补计算,控制机床进行五轴加工。试验结果表明:通过提出的五轴微段平滑压缩算法拟合后的路径要更加接近原始的曲面模型,平滑处理过的实际工件加工表面也要优于未进行处理的工件加工表面,提高了五轴自由曲面的表面质量。  相似文献   

9.
针对机床零件加工位置和进给方向不确定造成刀尖频响函数变化,导致切削稳定性叶瓣图与无颤振工艺参数预测具有不确定性问题,提出一种耦合支持向量回归机(SVR)与遗传算法(GA)的切削稳定性预测与优化方法。该方法采用锤击法模态实验和空间坐标变换,获取样本空间不同加工位置与进给方向的刀尖频响函数;进而结合传统切削稳定性预测方法构建以各向运动部件位移、进给角度、主轴转速、切削宽度、每齿进给量为输入的极限切削深度SVR预测模型;采用该SVR模型作为切削稳定性约束建立材料切除率优化模型,通过遗传算法求解各运动轴位移、进给角度与切削参数的最优配置。以某型加工中心展开实例研究,实验结果表明获取的优化配置能实现稳定切削,验证了该方法的有效性。  相似文献   

10.
高温合金蜂窝芯材料具有高比刚度、轻质和能量吸收特性好等优异性能,被视为下一代高超声速飞行器热防护结构极具潜力的材料。高速铣削是高温合金蜂窝芯零件成型过程中重要的减材制造工艺,在蜂窝芯材料高速铣削时,蜂窝芯材料面内刚度低且高温合金塑性好,较小的切削力就会使蜂窝壁产生较大的塑性变形,导致蜂窝芯加工精度较低、加工损伤难以控制,对后续焊接、装配等工序产生不利影响。基于有限元仿真对蜂窝壁切削材料去除机理进行了深入研究,探索了铣削参数、刀具类型和铣削方式对铣削过程中铣削力和加工损伤的影响。研究结果表明,蜂窝壁切入角是影响蜂窝芯材料切削加工过程中瞬时应力分布和成屑机理的关键性因素。得到了铣削参数、刀具类型和铣削方式对高温合金蜂窝芯加工过程中加工损伤的影响规律。对于铣削参数,过大的进给量会导致芯格变形等加工损伤,降低切削速度会提高微小毛刺等加工损伤发生的频率;本文采用的三种刀具的对比结果表明,立式铣刀加工质量最好。插铣方式会产生明显的轴向冲击,而侧铣方式可以有效避免轴向冲击。研究成果为高温合金蜂窝芯低损伤高性能加工提供了理论依据和工艺技术储备。  相似文献   

11.
转轮叶片是水轮机能量转换的关键部件,也是最难加工的零件,目前多轴联动数控加工是解决该类大型雕塑曲面零件最有效的加工方法。多轴联运数控加工编程则是实现其高精度的高效率加工的最重要环节。本文介绍混流式水轮叶片五轴联运数控加工大型雕塑曲面编程中涉及到转轮叶片三维造型、刀位轨迹计算、切削仿真、机床运动碰撞仿真、后置变换等关键技术。通过对这些技术的链接和研究,实现了大型叶片的多轴联动加工。  相似文献   

12.

The minimization of error generation in machine tool spindle is important because high-speed and ultra-precision machining are extensively utilized in industrial fields. The thermal deformation of the machine tool spindle generated by the frictional heat between the outer and inner bearings can deteriorate the machining accuracy. In this study, a TiC−SUS431 composite was fabricated using the liquid pressing infiltration method to suppress thermal deformation, and its thermal properties were obtained by thermal characteristic tests. For the transient thermal analysis with finite element analysis, the parameters of the machine tool spindle-bearing model were selected, and the boundary conditions were calculated. The temperature and thermal deformation of the analysis model were compared by applying SCM415 and TiC−SUS431 to the material of the machine tool spindle and changing the rotation speed. From the analysis results, it was demonstrated that the TiC−SUS431 machine tool spindle can improve the machining accuracy by minimizing the spindle thermal deformation.

  相似文献   

13.
蜂窝材料超声波切割声学系统研究   总被引:1,自引:0,他引:1       下载免费PDF全文
根据超声波加工原理,设计了一种新型Nomex蜂窝材料数控超声波切割主轴。采用四端网格法对变幅杆进行了有限元分析和位移节点修正。建立了超声波切割声学系统有限元模型,并进行了模态分析。从振型图可以看出变幅杆法兰盘处位移变化较小,输出端振幅较大。利用激光位移传感器测量了刀具的振动位移,圆形刀振幅a=22.37μm,满足加工要求。利用超声波切割主轴对Nomex蜂窝材料进行了大量切割实验,取得了加工表面平整光滑、加工精度高、切削过程中没有粉尘污染等显著效果。  相似文献   

14.
为实现在正常生产条件下进行刀具磨损的长期在线监测,提出了基于主轴电流信号和粒子群优化支持向量机模型(PSO-SVM)的刀具磨损状态间接监测方法.首先对数控机床主轴电机电流信号进行分析,将与刀具磨损相关的主轴电流信号多个特征参数和EMD能量熵进行特征融合作为输入特征向量;其次,通过粒子群寻优算法(PSO)对支持向量机模型...  相似文献   

15.
Generally, tool path is generated in a computer-aided manufacturing software considering only the geometry of machining parts. It is converted into numerical control (NC) codes in the postprocessor based on the particular machine kinematics. For some special types of five-axis machine tools, e.g., non-orthogonal five-axis machine tools, the generated NC codes may produce unqualified parts because of the existence of the non-linear error. Conventional commercialized postprocessors usually do not have the function of non-linear error checking. Observing that the tool path is a non-smooth trajectory full of corners and a series of connected line segments, cubic spline interpolation is applied to smooth the tool path at regular points in this study. The cutter tip center points are computed by the cubic spine interpolation, while the cutter posture vectors are obtained via linear interpolation. At the splines (for regular points) and the line segments (feature points), more points are chosen to be converted into NC codes to reduce the non-linear error, which is called data densification. Using the cubic spline to smooth the tool path and the data densification to reduce the non-linear error, a novel tool path optimization algorithm in postprocessor is proposed. Experiments were carried out on an inclined rotary spindle axis non-orthogonal five-axis machine tool. It shows that the proposed tool path optimization provides improved accuracy and surface quality.  相似文献   

16.
A digital machining system is a core subsystem of a virtual machining system at the lowest level, and it provides physical attributes of both the machining process and machine tool to the upper application level. A digital machining system based on mechanistic models is developed. An expandable general base model is built in the system and the interfaces for extending to upper level models are provided for easy integration. The system consists of many integrative dynamic machining process simulation models including milling, turning, boring and grinding. The development of the digital machining system is completed by integrating a spindle analysis model through a modular interface using modal superposition methods. The digital machining system is evaluated in aspects of determining spindle related machining process constraints, predicting spindle condition-dependent chatter boundaries and selecting cutting tools.  相似文献   

17.
Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high-speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process of spindle tool. Prediction of the dynamic behavior at spindle tool tip is therefore of importance for assessing the machining stability of a machine tool at design stage. This study was aimed to evaluate the machining stability of a vertical milling system under the interactive influence of the spindle unit and the machine frame structure. To this end, a realistic finite element model of a vertical milling tool was generated by incorporating the spindle-bearing model into the head stock mounted on machine frame. The influences of the dynamics of spindle-bearing system and the machine frame structure were investigated respectively. Current results show that the machine tool spindle system demonstrates different dynamic behaviors at different frequency ranges, which are also characterized as structural modes and spindle modes, respectively. In particular, the maximum compliance of spindle tool tip was found to occur at the bending vibrations of spindle shaft and vary with the preload amount of spindle bearing. The machining stabilities were predicted to different extent, depending on the exciting modes which could be related to the influences of machine frame and spindle unit.  相似文献   

18.
用PMAC实现精确从动   总被引:5,自引:1,他引:4  
采用PMAC(programmable multi-axis controller)作为机床数控系统,设计并制造了一台数控车床。该机床通过PMAC将它的切削轴从动于主轴编码器,使得刀具速度跟踪主轴速度,从而得到恒定的螺距,实现了精确从动。  相似文献   

19.
针对刀具两摆的五轴龙门数控铣床,对一转动轴与一平动轴联动及两转动轴联动加工圆弧时的动态轨迹误差分别进行了分析。采用D-H(Denavit-Hartenberg)法对轴的输入的进给指令位置计算公式进行了推导,并将进给指令位置输入到由动态仿真工具Simulink构建的进给伺服系统仿真模型中,得到了圆弧上动态轨迹误差的分布曲线。通过对转动轴联动加工圆弧的动态轨迹误差分析,可为五轴龙门数控铣床转动轴动态误差的检测提供指导,使得机床的检测与调整更加快速和便捷。  相似文献   

20.
Five-axis machines with three translational and two rotation axes are becoming increasingly popular in serving the needs of the mass production industry due to their ability to handle geometrically complex workpieces using the rotational axes. Theoretically, the combination of the five axes offers a minimal number of the degrees of freedom required to transport the tool into a prescribed spatial position and establish a required orientation. However, the rotation axes lead to an inevitable nonlinearity of the tool tip trajectory and the so-called kinematics errors appearing due to the specific kinematics of the machine. Eventually, one arrives at an interesting question. Is it possible to compensate this error by introducing an additional rotation axis? In other words, ??does an additional rotation axis offer any optimization benefits in the sense of the above mentioned error??? In this paper, we answer this question positively by analyzing a hypothetical six-axis milling machine with two rotation axes on the table and one additional rotation axis on the tool. The sixth axis is build on the top of the existing five-axis machine MAHO600E by Deckel Gildemeister. We present an extension of an optimization algorithm developed earlier by the authors for five-axis machining based on an optimal angle sequencing (the shortest path optimization). The extension is a combination of the shortest path strategy and the use of the additional axis. The algorithm leads to an increase in the machining accuracy, in particular, for rough milling. Numerical experiments and cutting by a virtual six-axis machine built in Vericut 5.0 validates the results of the optimization. The proposed optimization procedure is capable of upgrading the existing five-axis G-codes to the case of six-axis machine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号