首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A copper pad oxidizes easily at elevated temperatures during thermosonic wire bonding for chips with copper interconnects. The bondability and bonding strength of a gold wire onto a bare copper pad are seriously degraded by the formation of a copper oxide film. A new bonding approach is proposed to overcome this intrinsic drawback of the copper pad. A silver layer is deposited as a bonding layer on the surface of copper pads. Both the ball-shear force and the wire-pull force of a gold wire bonded onto copper pads with silver bonding layers far exceed the minimum values stated in the JEDEC standard and MIL specifications. The silver bonding layer improves bonding between the gold ball and copper pads. The reliability of gold ball bonds on a bond pad is verified in a high-temperature storage (HTS) test. The bonding strength increases with the storage time and far exceeds that required by the relevant industrial codes. The superior bondability and high strength after the HTS test were interpreted with reference to the results of electron probe x-ray microanalyzer (EPMA) analysis. This use of a silver bonding layer may make the fabrication of copper chips simpler than by other protective schemes.  相似文献   

2.
Compared with gold wire, silver wire is cheaper and enjoys better electrical conductivity. These days copper wire is becoming more commonly used, but the reliability of its bonding still has problems in some pads. Since Ag wires have similar hardness and bonding properties to Au wires, they can be applied in some pads. In the present study, the annealing effect (at 225-275 °C for 30 min) on the tensile mechanical properties of silver wires with ? = 23 μm was investigated. In addition, the microstructural characteristics and the mechanical properties before and after an electric flame-off (EFO) process were also studied. Experimental results indicate that with annealing temperatures of more than 250 °C, the silver wires possessed a fully annealed structure, the tensile strength and the hardness decreased, and the elongation was raised significantly. Through recrystallization, the matrix structure transformed from long-thin grains to equiaxed grains. The microstructure of the free air ball (FAB) of the various annealed wires after an EFO process were column-like grains. The column-like grains grew from the heat-affected zone (HAZ) to the Ag ball. Under the thermal effect of EFO, the necks of the Ag balls underwent recrystallization and grain growth was induced, and the annealed Ag wires had a shorter zone of HAZ (220 μm). Additionally, the decreased hardness and the low strength of the HAZ resulted in the breakage sites of the EFO wires being in the HAZ near the Ag balls. The bonding strength and the neck-strength of the Ag wires were more than 7gf and possessed excellent bonding properties.  相似文献   

3.
Direct gold and copper wires bonding on copper   总被引:1,自引:0,他引:1  
The key to bonding to copper die is to ensure bond pad cleanliness and minimum oxidation during wire bonding process. This has been achieved by applying a organic coating layer to protect the copper bond pad from oxidation. During the wire bonding process, the organic coating layer is removed and a metal to metal weld is formed. This organic layer is a self-assembled monolayer. Both gold and copper wires have been wire-bonded successfully to the copper die even without prior plasma cleaning. The ball diameter for both wires are 60 μm on a 100 μm fine pitch bond pad. The effectiveness of the protection of the organic coating layer starts from the wafer dicing process up to the wire bonding process and is able to protect the bond pad for an extended period after the first round of wire bond process. In this study, oxidization of copper bond pad at different packaging processing stages, dicing and die attach curing, have been explored. The ball shear strength for both gold and copper ball bonds achieved are 5 and 6 g/mil2 respectively. When subjected to high temperature storage test at 150 °C, the ball bonds formed by both gold and copper wire bond on the organic coated copper bondpad are thermally stable in ball shear strength up to a period of 1440 h. The encapsulated daisy chain test vehicle with both gold and copper wires bonding have passed 1000 cycles of thermal cycling test (−65 to 150 °C). It has been demonstrated that orientation imaging microscopy technique is able to detect early levels of oxidation on the copper bond pad. This is extremely important in characterization of the bondability of the copper bond pad surface.  相似文献   

4.
The semiconductor packaging industry is undergoing a step-change transition from gold to copper wire bonding brought on by a quadrupling of gold cost over the last 8 years. The transition has been exceptionally rapid over the last 3 years and virtually all companies in the industry now have significant copper wire bonding production. Among the challenges to copper wire bonding is the damage to bond pads that had been engineered for wire bonding with the softer gold wire. This paper presents an extensive evaluation of electroless NiPd and NiPdAu bond pads that offer a much more robust alternative to the standard Al pad finish. These NiPd(Au) bond are shown to outperform Al in virtually all respects: bond strength, bond parameter window, lack of pad damage and reliability.  相似文献   

5.
Thermosonic bonding process is a viable method to make reliable interconnections between die bond pads and leads using thin gold and copper wires. This paper investigates interface morphology and metallurgical behavior of the bond formed between wire and bond pad metallization for different design and process conditions such as varying wire size and thermal aging periods. Under thermal aging, the fine pitch gold wire ball bonds (0.6 mil and 0.8 mil diameter wires) shows formation of voids apart from intermetallic compound growth. While, with 1-mil and 2-mil diameter gold wire bonds the void growth is less significant and reveal fine voids. Studies also showed void formation is absent in the case of thicker 3 mil wire bonds. Similar tests on copper ball bonds shows good diffusional bonding without any intermetallic phase formation (or with considerable slow growth) as well as any voids on the microscopic scale and thus exhibits to be a better design alternative for elevated temperature conditions.  相似文献   

6.
Copper wires are used in electronic packaging, however the workability and reliability still need to be improved. This work investigates the microstructural characteristics and mechanical properties of annealed wires and un-annealed wires. In addition, the interface bonding characteristics of Al pads are also studied. Experimental results indicate that at the two annealing conditions of 610 °C/0.02 s and 510 °C/0.4 s, 20 μm copper wires possessed a fully annealed structure. Compared with the un-annealed wire, the annealed tensile strength and the annealed hardness decreased, and the annealed elongation increased. Through thermal crystallization, the matrix structure transformed from long, thin grains to equiaxed grains and a few annealed twins. The microstructure of the free air ball (FAB) after an EFO process consisted of column-like grains, and grew from the heat-affected zone (HAZ) to the Cu ball. As for bonding testing, the pull strength of the bonded samples increased with increasing the Al film thickness (from 76 nm to 800 nm).  相似文献   

7.
A novel thermosonic (TS) bonding process for gold wire bonded onto chips with copper interconnects was successfully developed by depositing a thin, titanium passivation layer on a copper pad. The copper pad oxidizes easily at elevated temperature during TS wire bonding. The bondability and bonding strength of the Au ball onto copper pads are significantly deteriorated if a copper-oxide film exists. To overcome this intrinsic drawback of the copper pad, a titanium thin film was deposited onto the copper pad to improve the bondability and bonding strength. The thickness of the titanium passivation layer is crucial to bondability and bonding strength. An appropriate, titanium film thickness of 3.7 nm is proposed in this work. One hundred percent bondability and high bonding strength was achieved. A thicker titanium film results in poor bond-ability and lower bonding strength, because the thicker titanium film cannot be removed by an appropriate range of ultrasonic power during TS bonding. The protective mechanism of the titanium passivation layer was interpreted by the results of field-emission Auger electron spectroscopy (FEAES) and electron spectroscopy for chemical analysis (ESCA). Titanium dioxide (TiO2), formed during the die-saw and die-mount processes, plays an important role in preventing the copper pad from oxidizing. Reliability of the high-temperature storage (HTS) test for a gold ball bonded on the copper pad with a 3.7-nm titanium passivation layer was verified. The bonding strength did not degrade after prolonged storage at elevated temperature. This novel process could be applied to chips with copper interconnect packaging in the TS wire-bonding process.  相似文献   

8.
A flip-chip assembly is an attractive scheme for use in high performance and miniaturized microelectronics packaging. Wafer bumping is essential before chips can be flip-bonded to a substrate. Wafer bumping can be used for mechanical-single point stud bump bonding (SBB), and is based on conventional thermosonic wire bonding. This work proposes depositing a titanium barrier layer between the copper film and the silver bonding layer to achieve perfect bondability and sufficiently strong thermosonic bonding between a stud bump and the copper pad.A titanium layer was deposited on the copper pads to prevent copper atoms from out-diffusing during thermosonic stud bump bonding. A silver film was then deposited on the surface of the titanium film as a bonding layer to increase the bondability and bonding strength for stud bumps onto copper pads. The integration of the silver bonding layer with a diffusion barrier layer of titanium on the copper pads yielded 100% bondability between the stud bump and pads. The strength of bonding between the gold bumps on the copper pads significantly exceeds the minimum average values in JEDEC specifications. The diffusion barrier layer of titanium effectively prevents copper atoms from out-diffusing to the silver bonding layer surface during thermosonic bonding, which fact can be interpreted with reference to the experimental results of energy dispersive spectrometry (EDS) and analyses of Auger depth profiles. This diffusion barrier layer of titanium efficiently provides perfect bondability and sufficiently strong bonding between a stud bump and copper pads with a silver bonding layer.  相似文献   

9.
To understand the copper oxide effect on the bondability of gold wire onto a copper pad, thermosonic gold wire bonding to a copper pad was conducted at 90–200 °C under an air atmosphere. The bondability and bonding strength of the Au/Cu bonds were investigated. The bondability and bonding strength were far below the minimum requirements stated in industrial codes. At elevated bonding temperature of 200 °C, the bondability and bonding strength deteriorated mainly due to hydroxide and copper oxide formation on the copper pad. Oxide formation occurred if no appropriate oxide preventive schemes were applied. At lower bonding temperature, 90 °C, poor bondability and low bonding strength were mainly attributed to insufficient thermal energy for atomic inter-diffusion between the gold ball and copper pad.Copper pad oxidation was investigated using an electron spectroscopy for chemical analysis (ESCA) and thermogravimetric analysis (TGA). An activation energy of 35 kJ/mol for copper pad oxidation was obtained from TGA. This implies that different mechanisms govern the oxidation of copper pad and bulk copper. Hydroxide and copper oxide were identified based on the shifted binding energy. Cu(OH)2 forms mainly on the top surface of copper pads and the underlying layer consists mainly of CuO. The hydroxide concentration increased with increasing the heating temperatures. After heating at 200 °C, the hydroxide concentration on the copper pad surface was approximately six times that at 90 °C. Protective measures such as passivation layer deposition or using shielding gas are critical for thermosonic wire bonding on chips with copper interconnects.  相似文献   

10.
In this paper design rules for maximum current handling capability of gold bond wires are derived based on two failure mechanisms: (1) fusing of the wire; and (2) degradation of the interface between gold bond balls and the aluminum bond pads under high current/high temperature stress. For determination of the fuse current as a function of the length an analytical model is used to calculate the temperature and power distribution in the wire as a function of the position. The current level at which the melt temperature of gold is reached is the fuse current. The degradation mechanism under high current stress (up to 2.5 A) was studied by in-situ monitoring of the gold bond ball–aluminum interconnect contact resistance under high current stress at various temperatures and stress currents. The cumulative failure distributions were used to fit a model for lifetime as a function of current and temperature that shows an order of magnitude difference in lifetime between positive and negative current stress. Finally, fuse current and the lifetime model result in data-driven high current design rules for bond pad and wire.  相似文献   

11.
金、铜丝球键合焊点的可靠性对比研究   总被引:2,自引:0,他引:2  
金丝球焊是电子工业中应用最广泛的引线键合技术,但随着高密度封装的发展,铜丝球焊日益引起人们的关注。采用热压超声键合的方法,分别实现Au引线和Cu引线键合到Al-1%Si-0.5%Cu金属化焊盘。对焊点进行200℃老化实验的结果表明:铜丝球焊焊点的金属间化合物生长速率比金丝球焊焊点慢的多;铜丝球焊焊点具有比金丝球焊焊点更稳定的剪切断裂载荷,并且在一定的老化时间内铜丝球焊焊点表现出更好的力学性能;铜丝球焊焊点和金丝球焊焊点在老化后的失效模式不同。  相似文献   

12.
Microstructural study of copper free air balls in thermosonic wire bonding   总被引:1,自引:0,他引:1  
Copper wires are increasingly used in place of gold wires for making bonded interconnections in microelectronics. In this paper, a microstructural study is reported of cross-sectioned free air balls (FABs) made with 23 μm diameter copper bonding wire. It was found that the FAB is comprised of a few columnar grains and a large number of fine subgrains formed within the columnar grains around the periphery of the FAB. It was determined that conduction through the wire was the dominant heat loss mechanism during cooling, and the solidification process started from the wire-ball interface and proceeded across the diameter then outward towards the ball periphery.The microstructure of the Cu ball bond after thermosonic bonding was investigated. The result showed that the subgrain orientations were changed in the bonding process. It is evident that metal flow along the bonding interface was from the central area to the bond periphery during thermosonic bonding.  相似文献   

13.
To improve the bondability and ensure the reliability of Au/Cu ball bonds of the thermosonic (TS) wire-bonding process, an argon-shielding atmosphere was applied to prevent the copper pad from oxidizing. With argon shielding in the TS wire-bonding process, 100% gold wire attached on a copper pad can be achieved at the bonding temperature of 180°C and above. The ball-shear and wire-pull forces far exceed the minimum requirements specified in the related industrial codes. In a suitable range of bonding parameters, increasing bonding parameters resulted in greater bonding strength. However, if bonding parameters exceed the suitable range, the bonding strength is deteriorated. The reliability of the high-temperature storage (HTS) test for Au/Cu ball bonds was verified in this study. The bonding strength of Au/Cu ball bonds increases slightly with prolonged storage duration because of diffusion between the gold ball and copper pad during the HTS test. As a whole, argon shielding is a successful way to ensure the Au/Cu ball bond in the TS wire-bonding process applied for packaging of chips with copper interconnects.  相似文献   

14.
Copper wire bonding is an alternative interconnection technology that serves as a viable, and cost saving alternative to gold wire bonding. Its excellent mechanical and electrical characteristics attract the high-speed, power management devices and fine-pitch applications. Copper wire bonding can be a potentially alternative interconnection technology along with flip chip interconnection. However, the growth of Cu/Al intermetallic compound (IMC) at the copper wire and aluminum interface can induce a mechanical failure and increase a potential contact resistance. In this study, the copper wire bonded chip samples were annealed at the temperature range from 150/spl deg/C to 300/spl deg/C for 2 to 250 h, respectively. The formation of Cu/Al IMC was observed and the activation energy of Cu/Al IMC growth was obtained from an Arrhenius plot (ln (growth rate) versus 1/T). The obtained activation energy was 26Kcal/mol and the behavior of IMC growth was very sensitive to the annealing temperature. To investigate the effects of IMC formation on the copper wire bondability on Al pad, ball shear tests were performed on annealed samples. For as-bonded samples, ball shear strength ranged from 240-260gf, and ball shear strength changed as a function of annealing times. For annealed samples, fracture mode changed from adhesive failure at Cu/Al interface to IMC layer or Cu wire itself. The IMC growth and the diffusion rate of aluminum and copper were closely related to failure mode changes. Micro-XRD was performed on fractured pads and balls to identify the phases of IMC and their effects on the ball bonding strength. From XRD results, it was confirmed that the major IMC was /spl gamma/-Cu/sub 9/Al/sub 4/ and it provided a strong bondability.  相似文献   

15.
The use of copper wire for semiconductor package assembly has been gradually gaining acceptance throughout the industry over the last decade. Although copper has several advantages over gold for wire bonding applications, the manufacturing difficulties using copper wire have made high volume, fine pitch copper bonding slow to materialize. In recent years with the spike in gold prices, copper wire has become even more attractive, and this has driven many studies on the topic.Due to the propensity for copper to work harden upon deformation, which occurs during the ball bonding process as the capillary tip smashes the ball into the bond pad, a high amount of stress is transferred into the bond pad structure. This can result in catastrophic defects such as dielectric cracking or pad cratering. The current study aims to quantify the level of underlying bond pad damage with respect to various bond pad metallization and barrier layer schemes. A first bond parameter optimization was completed on each experimental group. The results indicate that barrier layer structure and composition have a significant impact on the presence of pad cratering. The experimental group containing only TiN as the barrier material showed a high occurrence of cratering, while groups with Ti and TiW barrier metals showed no cratering, even if a TiN layer was on top of the Ti. The bond pad metal thickness, on the other hand, does not appear to play a significant role in the prevention of bond pad cratering. Metal thickness values ranging from 0.825 to 2.025 μm were evaluated, and none had bond pad cratering other than the group with TiN as the barrier metal. In addition to the first bond parameter evaluations with various bond pad and barrier metal combinations, the initial free air ball (FAB) optimization is discussed.  相似文献   

16.
The process windows are presented for low-temperature Au wire bonding on Au/Ni/Cu bond pads of varying Au-layer thicknesses metallized on an organic FR-4 printed circuit board (PCB). Three different plating techniques were used to deposit the Au layers: electrolytic plating, immersion plating, and immersion plating followed by electrolytic plating. Wide ranges of wire bond force, bond power, and bond-pad temperature were used to identify the combination of these processing parameters that can produce good wire bonds, allowing the construction of process windows. The criterion for successful bonds is no peel off for all 20 wires tested. The wire pull strengths and wire deformation ratios are measured to evaluate the bond quality after a successful wire bond. Elemental and surface characterization techniques were used to evaluate the bond-pad surfaces and are correlated to wire bondability and wire pull strength. Based on the process windows along with the pull strength data, the bond-pad metallization and bonding conditions can be further optimized for improved wire bondability and product yields. The wire bondability of the electrolytic bond pad increased with Au-layer thickness. The bond pad with an Au-layer thickness of 0.7 μm displayed the highest bondability for all bonding conditions used. The bondability of immersion bond pads was comparable to electrolytic bond pads with a similar Au thickness. Although a high temperature was beneficial to wire bondability with a wide process window, it did not improve the bond quality as measured by wire pull strength.  相似文献   

17.
In this work, inspection tools and surface analysis instruments were used to inspect and to analyze the defects at copper bond pads fabricated with copper/low k dual damascene deep submicron interconnect process integration. The defects at level are believed to be responsible for metal peeling at the Ta + Al and copper interface observed during chip wire bonding operation. The analysis results of the trace defects’ chemical composition show that the trace defects are the remainder of dielectric materials of passivation layer that is deposited on the top of the chip for protection. Copper oxide is also found to be present at the copper bond pads surface. A clear copper bond pad surface could be obtained using optimized dielectric pad window opening plasma etching conditions with suitable level plasma etching power and some overetch, improved photoresist stripping with oxygen and wet clean recipe with some chemicals. A clear copper bond pad surface will contribute to obtainment higher adhesion and lower contact resistance at Ta + Al and copper pad interface.  相似文献   

18.
The yield of IC assembly manufacturing is dependent on wire bonding. Recently, the semiconductor industry demands smaller IC designs and higher performance requirements. As such, bonding wires must be stronger, finer, and more solid. The cost of gold is continuously appreciating, and this has become a key issue in IC assembly and design. Copper wire bonding is an alternative solution to this problem. It is expected to be superior over Au wires in terms of cost, quality, and fine-pitch bonding pad design. To obtain the best wire bonding quality, we employed Taguchi methods in optimizing the Cu wire bonding process. With Cu wire bonding technology, the production yield increased from 98.5% to 99.3% and brought approximately USD 0.7 million in savings.  相似文献   

19.
宋慧芳 《电子与封装》2012,12(2):12-14,48
虽然在集成电路封装工艺中金导线键合是主流制程,但是目前采用铜导线替代金导线键合已经在半导体封装领域形成重要研究趋势。文章对微电子封装中铜导线键合可行性进行了分析,主要包括铜导线与金导线的性能比较(包括电学性能、物理参数、机械参数等),铜导线制备和微组织结构分析,铜导线焊合中的工艺研发及铜导线焊合可靠性分析等。当今半导体生产商关注铜导线不仅是因为其价格成本优势,更由于铜导线具有良好的电学和机械特性,同时文中也介绍了铜导线键合工艺存在的诸多问题和挑战,对将来铜导线在集成电路封装中的大规模应用和发展具有一定的参考意义。  相似文献   

20.
The main purposes for developing low-alloyed Au bonding wires were to increase wire stiffness and to control the wire loop profile and heat-affected zone length. For these reasons, many alloying elements have been used for the various Au bonding wires. Although there have been many studies reported on wire strengthening mechanisms by adding alloying elements, few studies were performed on their effects on Au bonding wires and Al pad interfacial reactions. Palladium has been used as one of the important alloying elements of Au bonding wires. In this study, Au-1wt.%Pd wire was used to make Au stud bumps on Al pads, and effects of Pd on Au/Al interfacial reactions, at 150°C, 175°C, and 200°C for 0 to 1200 h thermal aging, were investigated. Cross-sectional scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and electron probe microanalysis (EMPA) were performed to identify intermetallic compound (IMC) phases and Pd behavior at the Au/Al bonding interface. According to experimental results, the dominant IMC was Au5Al2, and a Pd-rich layer was at the Au wire and Au-Al IMC. Moreover, Au-Al interfacial reactions were significantly affected by the Pd-rich layer. Finally, bump shear tests were performed to investigate the effects of Pd-rich layers on Au wire bond reliability, and there were three different failure modes. Cracks, accompanied with IMC growth, formed above a Pd-rich layer. Furthermore, in longer aging times, fracture occurred along the crack, which propagated from the edges of a bonding interface to the center along a Pd-rich layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号