首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 578 毫秒
1.
在“双碳”背景下,碳化硬化型胶凝材料的研究为水泥行业实现碳中和提供了较好的思路。本文采用工业钙质和硅质原料制备γ-C2S,探究CO2浓度、CO2压力、碳化湿度、碳化时间等因素对γ-C2S碳化性能的影响,明确最佳碳化制度,并通过XRD和电子扫描探针等测试,对γ-C2S碳化机理进行深入分析。结果表明,工业原材料制备的γ-C2S的抗压强度和固碳量随碳化养护时间、碳化养护湿度、CO2浓度的增大而增大,碳化养护8h抗压强度可达155.8MPa,固碳量达16.96wt.%。  相似文献   

2.
碳矿化材料是由固碳胶凝材料通过与CO2在常规环境下的碳化反应快速形成以碳酸钙为主要基体组成的复合材料,是实现工业烟气CO2建材化利用的重要技术途径。本工作以γ-C2S为固碳胶凝材料,研究了Fe掺杂、壳聚糖引入、养护制度设计3种复合增强措施对碳矿化材料力学性能与产物组成的影响规律。结果表明,不同的增强措施并非简单的叠加效应,也存在矛盾关系,其中,可以获得超高强度的组别有:Fe–γ-C2S+壳聚糖引入的碳矿化材料在养护24 h后抗压强度达到200 MPa以上,壳聚糖引入组可以在延长养护时间后获得更高的强度上限,养护7 d后抗压强度可达约230MPa。Fe–γ-C2S组的碳酸钙晶型以方解石为主,而长期CO2养护下的γ-C2S组则为文石相组成。不同的产物组成也是影响强度增长的重要因素,由此提出超高强碳矿化材料的理想结构模型:壳聚糖存在于硅凝胶与碳酸钙之间,连接两相,方解石生长于内部,文石包裹于外部。方解石为碳矿化体养护早期提供强度,文石则在外...  相似文献   

3.
本文研究了Al2O3掺杂对γ-C2S熟料粒径、微观结构和力学性能的影响。试验结果表明:Al2O3掺杂不会改变γ-C2S的晶型,但显著改变了其形貌;纯相γ-C2S颗粒表面褶皱较多,颗粒尺寸较大,掺杂Al2O3后γ-C2S颗粒表面褶皱消失而变得光滑;γ-C2S碳化体的抗压强度与碳化程度随着Al2O3掺量的提高逐渐增加。通过碳化反应温升并结合碳酸钙衍射峰的半峰宽和X射线衍射仪(XRD)定量分析表明,Al2O3掺杂延缓了碳化放热,有利于碳化反应的持久进行,同时促进了碳酸钙晶粒的生长和数量的增加,从而使碳化程度更高,基体结构更加密实,因而抗压强度更高。  相似文献   

4.
碱性固废湿法碳酸化是一种矿化固定CO2的有效方式。为探究电石渣废弃物直接湿法碳酸化固定CO2的反应特性,基于高压反应釜试验装置,在常温环境下研究液固比(5~20)、碳酸化时间(0~4 h)和反应压力(0.1~1.0 MPa)对电石渣碳酸化速率和CO2固定能力的影响。结果表明,电石渣具备良好的CO2固定能力,1 h内整体碳酸化反应基本完成,CO2固定能力会随液固比和反应压力的增加而提升。反应时间4 h,最优工况(1 MPa、液固比20)下电石渣的CO2固定量达9.26 mmol/g,而在0.1 MPa、液固比5时,电石渣的CO2固定量仅3.58 mmol/g。电子扫描显微镜和热重分析证明了电石渣碳酸化反应后生成了大量CaCO3,且碳酸化产物的粒径显著减小。因此,在反应釜中常温加压条件下,电石渣直接液相碳酸化即具备较好的CO2固定能力和较高的碳酸化效率。本研究结果能为电石渣加速矿化固定CO  相似文献   

5.
本文研究了植生混凝土的碱度及力学性能随CO2养护压力的变化规律,并结合X射线衍射定量相分析(XRD-QPA)、热重分析(TGA)及扫描电子显微镜(SEM)等方法,探讨了CO2养护压力对反应速率及产物生成的影响。结果表明:增大CO2养护压力可提高硅酸三钙(C3S)、硅酸二钙(C2S)及氢氧化钙(CH)的碳化速率,同时可快速生成碳化致密层,有利于延缓CH的生成与溶出;碳化反应生成的碳酸钙(CaCO3)及水化硅酸钙(C-S-H)凝胶增大了水泥石密实度,可有效提升植生混凝土的抗压强度。与常压CO2养护相比,在CO2养护压力为0.3 MPa的条件下养护1 h,植生混凝土3 d抗压强度提高了72.8%,28 d抗压强度提高了4.8%,28 d的pH值由11.4降低至8.2。适度提高CO2养护压力对植生混凝土降碱和增强效果良好。  相似文献   

6.
为了实现建材行业的“碳达峰、碳中和”目标,使用工业钙质原料和硅质原料在1 350℃制备了一种低钙固碳胶凝材料,研究了不同CO2浓度养护对低钙固碳胶凝材料碳化程度和碳化后性能的影响,并通过X射线衍射(XRD)、傅里叶红外光谱分析(FT-IR)、热重分析(TG)、扫描电子显微镜(SEM)、电子探针(EPMA)等测试手段进行了低钙固碳胶凝材料碳化后的产物分析、微观分析和机理分析。结果表明,随着CO2浓度的提高,低钙固碳胶凝材料的碳化程度和抗压强度显著提高,当CO2浓度为99.99%(体积分数)时,低钙固碳胶凝材料碳化8 h后的抗压强度为132.2 MPa,与CO2浓度为25%时相比,抗压强度提高了260%。  相似文献   

7.
在碳捕集、利用和封存(CCUS)井下,油井水泥因长期受井下高温、高压和高酸性流体的作用会遭受碳化腐蚀导致水泥环失效。为了模拟CO2地质封存井下碳化腐蚀环境,本文将油井水泥的主要单相矿物硅酸三钙(C3S)置于不同温度(30 ℃、60 ℃、90 ℃),并密封在8.0 MPa的气相或液相的CO2碳化环境下,采用XRD和TGA相结合的分析方法,分析水泥单矿C3S受CO2腐蚀环境的影响规律。根据非稳态Fick扩散的渗透理论模型,建立腐蚀产物定量分析结果与腐蚀龄期的数学模型,拟合得到C3S受CO2腐蚀后的产物生成系数,以此评价不同CO2腐蚀因素对C3S的影响程度。结果表明:在CO2气相环境中,温度升高将显著加剧对C3S的腐蚀且产生溶蚀现象;而在CO2液相环境下,高温(90 ℃)使C3S水化反应加剧并形成阻滞层,降低CO2对C3S的腐蚀速率。  相似文献   

8.
搭建了鼓泡床碳酸化反应器,研究常温常压下电石渣直接液相碳酸化矿化封存CO2的能力,揭示了重要操作参数表观气速、液固比和CO2浓度对电石渣矿化封存CO2能力和碳酸化效率的影响规律。同时构建响应面模型,分析各参数对电石渣碳酸化效率的影响强度,优化获得最大碳酸化效率及相应操作工况。结果表明,增加气速有利于钙离子溶解和CO2吸收,但反应器中过高气速易导致气相通道效应,不利于气液充分接触。当液固比降低,溶液中钙离子浓度提高,更有利于碳酸化反应,但液固比过低会影响固液间传质。适当增加CO2浓度有利于提高碳酸化效率,但CO2浓度增至到一定值后,对碳酸化效率影响降低。响应面建模分析发现,各因素对碳酸化效率影响顺序为:液固比>CO2浓度>表观气速。优化结果发现碳酸化效率最高为93.58%,工况为表观气速0.07m/s,液固比为8.26mL/g和CO2体积分数为20.91%。研究可知,鼓泡床中常温常压下电石渣直接液相加速碳酸化反应,具有较大的CO2固定量和高的碳酸化效率,实验结果为电石渣加速矿化封存CO2技术的发展提供了基础数据。  相似文献   

9.
电化学催化还原二氧化碳是一种有效的能源储存手段。探索具有高乙烯选择性和高产率的高效电催化剂是非常必要的,但仍然具有挑战性。通过对金属有机骨架(Cu-BTC)的简单碳化制备了多孔Cu-Cu2O/C催化剂,用于高效且选择性地电催化CO2还原为C2+产物。碳化的MOF表现出优异的还原CO2为C2+的性能,在电位为-1.3 V(vs RHE)时,C2+的最大法拉第效率(FE)为47.8%,其部分电流密度为4.33 mA·cm-2。研究表明,较低的碳化温度有助于保留Cu-MOF的形貌,抑制活性金属位点团聚,而多孔特性也能提升其电化学活性面积,进而提高其对CO2电化学还原为C2+产物的性能。  相似文献   

10.
固碳胶凝材料是指能与CO2反应并将其他物料胶结为整体且具有一定机械强度的新型胶凝材料,利用固碳胶凝材料制备碳化制品是CO2资源化利用的重要途径,也是当前的研究热点。本文在明晰了固碳胶凝材料的定义与矿相组成的基础上,综合分析了固碳胶凝材料主要矿相的碳化反应活性、微结构演变与力学性能以及多介质传输反应机理,介绍了国内外固碳胶凝材料的3种主要体系与应用现状,展望了固碳胶凝材料未来的研究方向与应用前景,为我国水泥工业烟气中CO2的高效建材化利用提供研究思路。  相似文献   

11.
CO2矿物封存技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
CO2捕集与封存技术是目前实现碳减排最有效的方法。其中,CO2矿物封存(又称CO2矿化)是利用CO2与含钙镁硅酸盐矿物进行反应使CO2以稳定的碳酸盐形式永久储存起来。本文首先介绍了CO2矿化的基本原理和技术路线,其中间接矿化反应条件较温和、矿化效率更高、得到的产物也更纯,因此对于CO2间接矿化的研究也更广泛。本文综述并对比了天然矿物及工业固废矿化CO2的研究进展,指出工业固废更有利于CO2矿化过程。工业固废矿化CO2过程矿化CO2的同时处理了工业固废,实现以废治废,因此它在经济上也是具有一定优势。在此基础上,本文以高炉渣为代表,介绍了其矿化CO2的详细研究进展,指出采用可循环的助剂、回收高炉渣中有价元素可提升矿化过程经济性。对于CO2矿化过程的放大试验、生命周期的评估及低能耗的新工艺开发将是CO2矿物封存实现工业化的关键。  相似文献   

12.
ZEC(zero emission coal)系统中,粗煤气进入碳酸化/重整炉前需先脱除H2S,提出利用经过多次碳酸化/煅烧捕集CO2循环的煅烧石灰石(CaO)脱除H2S,并研究循环碳酸化/煅烧次数、硫化温度、H2S浓度和微观结构对循环CaO硫化特性的影响。结果表明,多次循环碳酸化/煅烧捕集CO2后CaO仍具有较高H2S吸收性能。前20次循环,CaO硫化转化率随循环次数增加迅速降低;20次循环后,CaO硫化转化率缓慢下降。硫化120 min后,未循环CaO的硫化转化率接近100%,而经历1、20和100次循环后CaO的硫化转化率分别为94%、81%和74%。H2S浓度对循环CaO硫化性能影响较大。硫化温度(800~1000℃)对循环CaO的硫化性能影响较小,最佳硫化温度为900℃。随循环次数增加,CaO颗粒发生高温烧结,导致比表面积降低和20~150 nm内孔隙减少,而这是与H2S吸收密切相关的孔隙,导致CaO硫化转化率降低。  相似文献   

13.
马晓彤  李英杰  王文静  张婉  王泽岩 《化工学报》2016,67(12):5268-5275
提出在碳酸化气氛中间歇加入HCl(间歇氯化)提高电石渣在循环煅烧/碳酸化反应中捕集CO2性能的新思路。在双固定床反应器上,在不同循环次数加入HCl、碳酸化温度、CO2/HCl体积比等条件下,研究HCl间歇加入对电石渣循环碳酸化特性的影响。结果表明,在循环煅烧/碳酸化反应中间歇加入HCl使电石渣间歇氯化能提高其循环捕集CO2性能。在前N次循环碳酸化时加入0.1% HCl,当N=4时能使电石渣获得最优CO2捕集性能,第10个循环时的CO2吸收量比无HCl时提高了51%。HCl与CaCO3发生氯化反应,破坏致密产物层对CO2扩散的阻碍,提高了电石渣的碳酸化转化率。在碳酸化气氛加入HCl时,最佳碳酸化温度仍为700℃。随CO2/HCl体积比增大,HCl对电石渣捕集CO2性能的促进作用减弱。  相似文献   

14.
黄浩  王涛  方梦祥 《化工进展》2019,38(10):4363-4373
CO2矿化养护技术利用早期成型后的混凝土材料和CO2之间的碳酸化反应和产物沉积过程实现产品力学强度等特性的提升,主要关注的是预养护/早期水化成型后的混凝土中胶凝成分和CO2之间的矿化反应(即加速碳酸化)。此过程中胶凝材料的水化过程不再是强度形成的主要反应,因此为了充分实现矿化成型和CO2固定,实现环境效益最大化,研究者近几年积极开发具有CO2矿化潜力的碱金属矿物材料,并探究其反应后对于混凝土微观结构和性能的促进效应。本文综述了CO2矿化养护技术在新型混凝土材料方面的研究进展,分别对传统混凝土采用的水化活性硅酸钙材料、水化惰性硅酸钙材料、镁基水泥材料以及工业固废材料等进行了具体介绍,比较了在不同材料与CO2反应特性以及养护后建材制品性能优化方面的最新成果,并对CO2矿化养护技术的后续发展进行了展望。主要建议:一是着眼于微观反应机制和矿物材料特性,开发有效的矿化反应强化方法;二是开发水化惰性的低钙硅比硅酸钙材料;三是将工业固废资源化与矿化养护技术结合,实现固废和气废利用流程耦合,推进特定工艺开发和装置研发。  相似文献   

15.
为避免温室效应带来的负面影响,CO2减排已成为目前的当务之急。CO2矿物碳酸化作为一种有潜力的CO2减排技术,受到了学者们的广泛关注。CO2矿物碳酸化方法主要包括直接干法碳酸化、直接湿法碳酸化以及间接碳酸化等不同工艺过程。目前,CO2直接或间接碳酸化方法面临的关键挑战是提升CO2碳酸化反应动力学特性;反应速率慢、碳酸化效率较低是当前该技术的主要问题。传统CO2胺类化学吸收法具有吸收速率快、吸收容量大和吸收剂能循环再生的优点,但能耗和运行成本较高。将CO2胺类化学吸收法与CO2碳酸化过程结合而开发的CO2吸收-矿化一体化技术(IAM)不仅解决了传统工艺高能耗、低转化率的问题,而且使工艺流程简化、成本降低,有利于应用于工业化。本文主要综述了近年来CO2矿化技术的研究进展,对比了各种工艺技术路线的不同特点,并分析指出加强对IAM工艺反应机理的研究以及开发出高效、经济的吸收剂和矿化原料,将是该工艺未来研究的重点和关键。  相似文献   

16.
为了有效改善精炼渣的安定性及致密性问题,采用正交试验探讨精炼渣碳酸化过程,以温度为单一影响因素,考察碳酸化粒度分布,结合XRD,SEM,FT-IR,TG-DTA等手段对精炼渣碳酸化效果进行探讨。结果表明,精炼渣碳酸化各因素主次关系为:粒径>CO2通气量>反应温度>转速>液固比;碳酸化后精炼渣中f-CaO、Ca2SiO4、Ca3SiO5、12CaO·7Al2O3消失,CaCO3晶型增加明显,且以方解石为主;不同温度(20 ℃、40 ℃、60 ℃、80 ℃)碳酸化后精炼渣总的热分解失重百分率分别为:35.26%、35.24%、34.36%和27.29%。  相似文献   

17.
林忠财  朱芳萍  王敏 《硅酸盐通报》2021,40(10):3337-3344
碳化养护可在加快水泥制品早期强度发展的同时固定二氧化碳,因此已引起国内外学者的广泛关注,然而,高温对碳化养护进程的影响却未见报道。本文选用5个温度(20 ℃、100 ℃、120 ℃、140 ℃、160 ℃)对干硬性水泥净浆进行碳化养护,探究了抗压强度随碳化温度的变化规律,并结合热重分析、X-射线衍射、红外光谱及扫描电镜等方法对碳化养护后样品的微观性能进行表征。结果表明:抗压强度及碳化程度随温度的升高表现出先增加后趋于平缓的趋势,碳化温度为140 ℃的试件相比碳化温度为20 ℃的试件抗压强度增长近4倍,表明高温碳化是加速养护的有效措施,适当的高温可以蒸发部分自由水,有利于碳化反应进行。此外,高温碳化养护生成了高聚合程度的无定形硅胶和三种不同晶型的碳酸钙(CaCO3),其中文石和球霰石所占比例相比于常温碳化有所上升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号