首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《应用化工》2022,(10):2735-2738
采用臭氧-高铁酸钾联合氧化处理苯酚废水,与单独使用臭氧或高铁酸钾氧化处理苯酚废水进行了对比。结果表明,单独使用臭氧氧化处理苯酚废水最佳的反应条件是:废水温度20℃,废水溶液的pH值为9,臭氧通入时间为25 min,此时苯酚去除率为89.6%。臭氧-高铁酸钾联合氧化处理苯酚废水时,最佳反应条件是:高铁酸钾投加量为0.8 g/L,废水温度20℃,废水溶液的pH值为9,反应时间为25 min,此时苯酚去除率为98.6%。臭氧-高铁酸钾联合氧化处理苯酚废水比单独使用臭氧或高铁酸钾氧化处理苯酚废水有更好的效果。  相似文献   

2.
采用次氛酸盐氧化法制取高铁酸钾,对其制备条件进行优化考察,并探讨高铁酸钾降解双酚A的规律.结果表明,控制反应温度10℃以下,用环己烷、甲醇、乙醚顺序洗涤产品,可获得纯度达97%高铁酸钾产品,产率为600%-75%;所得产品经XRD和FT-IR图谱表征,证明与高铁酸钾的标准图谱一致.室温、溶液pH=9.0、高铁酸钾与双酚A 质量浓度比为5:1时,5 min内双酚A降解率达94%;降解过程符合2级动力学方程-dp(BPA)/dt=kp(K2FeO4)p(BPA).表明高铁酸钾对双酚A有良好的降解效果.  相似文献   

3.
高铁酸钾氧化处理危废填埋场渗滤液研究   总被引:1,自引:0,他引:1  
危废填埋场渗滤液可生化性差,经生化处理后仍难以达到排放标准,本文提出利用高铁酸钾对渗滤液进行氧化处理,并对处理效果进行评价。实验结果表明,高铁酸钾氧化处理渗滤液的最佳条件为:pH=4.00、处理温度为30℃、高铁酸钾的最佳投加量为200 mg/L,在此条件下氧化处理渗滤液40 min,渗滤液COD去除率达到70%左右。  相似文献   

4.
利用高铁酸钾氧化性能,研究了影响高铁酸钾对矿井废水中COD氧化去除效果的因素.结果表明,在pH=7~10时,其氧化性发挥较好;20℃~50℃时,温度对高铁酸钾氧化性基本上没有影响.水中硬度、SO2-4和低含量的钠对高铁酸钾的氧化性基本没有影响,但当钠的质量浓度30 mg·L-1时,能够轻微增加有机物的去除效率.  相似文献   

5.
正交实验法优化铝合金阳极氧化工艺   总被引:2,自引:0,他引:2  
介绍了铝合金阳极氧化的生产工艺流程,通过正交实验优化了铝合金阳极氧化工艺和封孔条件,结果表明有利于阳极氧化膜厚度增加的最佳工艺为:氧化温度为23~25℃、电流密度为1.6A/dm2、氧化时间为35min、封孔温度为25℃、封孔时间为20min;有利于封孔质量的最佳工艺为:氧化温度为25℃、电流密度为1.3A/dm2、氧化时间为25min、封孔温度为30~40℃、封孔时间为20min:本实验可以为铝合金阳极氧化生产实践提供一种可行的研究方法和实验依据.  相似文献   

6.
研究了用次氯酸钙溶液对三甘醇二庚酸酯进行脱色时温度、时间、洗脱次数的影响.实验结果表明:在40℃、每次洗涤时间30min及洗涤5次条件下,产品几乎无色.  相似文献   

7.
针对液相色谱检测废液的处理开展实验研究。采用高铁酸钾氧化处理含甲醇的流动相废水,重点考察了高铁酸钾的投入量、反应时间、反应温度及p H值对甲醇降解效果的影响。甲醇的检测采用乙醇作内标物的气相色谱法检测。结果表明:在高铁酸钾与甲醇化学计量比条件下,最佳的氧化处理温度为35℃,p H=4. 0,反应时间120 min,甲醇的去除率达到80%。  相似文献   

8.
铜冶炼熔渣中铁组分的迁移与析出行为   总被引:4,自引:0,他引:4  
采用高温氧化改性方法,以某铜冶炼厂铜冶炼熔渣为原料,研究了渣中铁组分的迁移与析出行为. 考察了氧化时间、氧气流量与温度对铁组分迁移与析出行为的影响,分析了改性前后渣中物相组成及形貌,测定了磁铁矿相的晶体大小和体积分数. 结果表明,延长氧化时间、增加氧气流量及提高氧化温度均有利于渣中铁组分的迁移、富集、析出与长大,优化条件为温度1653 K、氧气流量7 L/min、氧化时间6 min,在此条件下,磁铁矿相的晶粒度由20 mm提高到80 mm、体积分数由20%提高到50%;经磁选分离得到54%(w)的铁精矿,回收率为90%左右.  相似文献   

9.
高铁酸钾与UV-vis/TiO2协同氧化效应的研究   总被引:1,自引:0,他引:1  
为研究高铁酸钾与紫外-可见光/二氧化钛(UV-vis/TiO2)光催化的协同氧化效应,以氨氮为目标物,研究了高铁酸钾、UV-vis/TiO2光催化以及高铁酸钾与UV-vis/TiO2光催化联用对水中氨氮的去除效果.结果表明,在高铁酸钾与UV-vis/TiO2光催化联用的条件下,在pH=8.0,温度为室温,反应时间为30 min,氨氮质量浓度50 mg/L,高铁酸钾、TiO2投加质量浓度分别为20、200 mg/L时,水中氨氮的去除率为97.5%,比单独的高铁酸钾或UV-vis/TiO2最大去除率分别提高了22.5%和14.7%.实验还表明,低浓度的高铁酸钾与UV-vis/TiO2光催化体系存在协同氧化效应,但高浓度的高铁酸钾对UV-vis/TiO2光催化体系却存在抑制效应.  相似文献   

10.
考察高铁酸钾处理低浓度甲醇(50mg/L)废水的氧化性能。研究了反应时间、反应温度、pH值、高铁酸钾的投加量对甲醇降解效果的影响。结果表明:在温度为30℃,pH=4.0,高铁酸钾用量200mg/L,反应60min,甲醇残余率为51.3%,甲醇浓度降至26mg/L。  相似文献   

11.
12.
Vismiones and ferruginins, representatives of a new class of lypophilic anthranoids from the genusVismia were found to inhibit feeding in larvae of species ofSpodoptera, Heliothis, and inLocusta migratoria.  相似文献   

13.
Despite its industrial importance, the subject of freeze-thaw (F/T) stability of latex coatings has not been studied extensively. There is also a lack of fundamental understanding about the process and the mechanisms through which a coating becomes destabilized. High pressure (2100 bar) freezing fixes the state of water-suspended particles of polymer binder and inorganic pigments without the growth of ice crystals during freezing that produce artifacts in direct imaging scanning electron microscopy (SEM) of fracture surfaces of frozen coatings. We show that by incorporating copolymerizable functional monomers, it is possible to achieve F/T stability in polymer latexes and in low-VOC paints, as judged by the microstructures revealed by the cryogenic SEM technique. Particle coalescence as well as pigment segregation in F/T unstable systems are visualized. In order to achieve F/T stability in paints, latex particles must not flocculate and should provide protection to inorganic pigment and extender particles. Because of the unique capabilities of the cryogenic SEM, we are able to separate the effects of freezing and thawing, and study the influence of the rate of freezing and thawing on F/T stability. Destabilization can be caused by either freezing or thawing. A slow freezing process is more detrimental to F/T stability than a fast freezing process; the latter actually preserves suspension stability during freezing. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, October 27–29, 2004 in Chicago, IL. Tied for first place in The John A. Gordon Best Paper Competition.  相似文献   

14.
It is well established that a wide range of drugs of abuse acutely boost the signaling of the sympathetic nervous system and the hypothalamic–pituitary–adrenal (HPA) axis, where norepinephrine and epinephrine are major output molecules. This stimulatory effect is accompanied by such symptoms as elevated heart rate and blood pressure, more rapid breathing, increased body temperature and sweating, and pupillary dilation, as well as the intoxicating or euphoric subjective properties of the drug. While many drugs of abuse are thought to achieve their intoxicating effects by modulating the monoaminergic neurotransmitter systems (i.e., serotonin, norepinephrine, dopamine) by binding to these receptors or otherwise affecting their synaptic signaling, this paper puts forth the hypothesis that many of these drugs are actually acutely converted to catecholamines (dopamine, norepinephrine, epinephrine) in vivo, in addition to transformation to their known metabolites. In this manner, a range of stimulants, opioids, and psychedelics (as well as alcohol) may partially achieve their intoxicating properties, as well as side effects, due to this putative transformation to catecholamines. If this hypothesis is correct, it would alter our understanding of the basic biosynthetic pathways for generating these important signaling molecules, while also modifying our view of the neural substrates underlying substance abuse and dependence, including psychological stress-induced relapse. Importantly, there is a direct way to test the overarching hypothesis: administer (either centrally or peripherally) stable isotope versions of these drugs to model organisms such as rodents (or even to humans) and then use liquid chromatography-mass spectrometry to determine if the labeled drug is converted to labeled catecholamines in brain, blood plasma, or urine samples.  相似文献   

15.
In 2002–2004, we examined the flight responses of 49 species of native and exotic bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) to traps baited with ethanol and/or (−)-α-pinene in the southeastern US. Eight field trials were conducted in mature pine stands in Alabama, Florida, Georgia, North Carolina, and South Carolina. Funnel traps baited with ethanol lures (release rate, about 0.6 g/day at 25–28°C) were attractive to ten species of ambrosia beetles (Ambrosiodmus tachygraphus, Anisandrus sayi, Dryoxylon onoharaensum, Monarthrum mali, Xyleborinus saxesenii, Xyleborus affinis, Xyleborus ferrugineus, Xylosandrus compactus, Xylosandrus crassiusculus, and Xylosandrus germanus) and two species of bark beetles (Cryptocarenus heveae and Hypothenemus sp.). Traps baited with (−)-α-pinene lures (release rate, 2–6 g/day at 25–28°C) were attractive to five bark beetle species (Dendroctonus terebrans, Hylastes porculus, Hylastes salebrosus, Hylastes tenuis, and Ips grandicollis) and one platypodid ambrosia beetle species (Myoplatypus flavicornis). Ethanol enhanced responses of some species (Xyleborus pubescens, H. porculus, H. salebrosus, H. tenuis, and Pityophthorus cariniceps) to traps baited with (−)-α-pinene in some locations. (−)-α-Pinene interrupted the response of some ambrosia beetle species to traps baited with ethanol, but only the response of D. onoharaensum was interrupted consistently at most locations. Of 23 species of ambrosia beetles captured in our field trials, nine were exotic and accounted for 70–97% of total catches of ambrosia beetles. Our results provide support for the continued use of separate traps baited with ethanol alone and ethanol with (−)-α-pinene to detect and monitor common bark and ambrosia beetles from the southeastern region of the US.  相似文献   

16.
17.
18.
19.
20.
Glycidyl carbamate chemistry combines the excellent properties of polyurethanes with the crosslinking chemistry of epoxy resins. Glycidyl carbamate functional oligomers were synthesized by the reaction of polyfunctional isocyanate oligomers and glycidol. The oligomers were formulated into coatings with several amine functional crosslinkers at varying stoichiometric ratios and cured at different temperatures. Properties such as solvent resistance, hardness, and impact resistance were dependent on the composition and cure conditions. Most coatings had an excellent combination of properties. Studies were carried out to determine the kinetics of the curing reaction of the glycidyl carbamate functional oligomers with multifunctional and model amines. Detailed kinetic analysis of the curing reactions was also undertaken. The results indicated that the glycidyl carbamate functional group is more reactive than a glycidyl ether group. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, on October 27–29, 2004, in Chicago, IL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号