首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
利用三维马尔可夫链和M/G/1/K队列建立了有限负载下DCF机制的性能模型,分析了终端数量、传输负载、二进制指数回退机制及MAC层有限队列对系统性能的影响.基于该模型,推导了有限负载下最大化吞吐量的最优最小竞争窗口的闭式解.仿真结果表明,模型能够有效地预测有限负载下DCF的性能,根据传输负载调整最小竞争窗口大小能够获得最大化吞吐量.  相似文献   

2.
Under a multirate network scenario, the IEEE 802.11 DCF MAC fails to provide airtime fairness for all competing stations since the protocol is designed for ensuring max-min throughput fairness. As such, the maximum achievable throughput by any station gets bounded by the slowest transmitting peer. In this paper, we present an analytical model to study the delay and throughput characteristics of such networks so that the rate anomaly problem of IEEE DCF multirate networks could be mitigated. We call our proposal time fair CSMA (TFCSMA) which utilizes an interesting baseline property for estimating a target throughput for each competing station so that its minimum contention window could be adjusted in a distributed manner. As opposed to the previous work in this area, TFCSMA is ideally suited for practical scenarios where stations frequently adapt their data rates to changing channel conditions. In addition, TFCSMA also accounts for packet errors due to the time varying properties of the wireless channel. We thoroughly compare the performance of our proposed protocol with IEEE 802.11 and other existing protocols under different network scenarios and traffic conditions. Our comprehensive simulations validate the efficacy of our method toward providing high throughput and time fair channel allocation.  相似文献   

3.
The binary exponential backoff (BEB) mechanism is applied to the packet retransmission in lots of wireless network protocols including IEEE 802.11 and 802.15.4. In distributed dynamic network environments, the fixed contention window (CW) updating factor of BEB mechanism can’t adapt to the variety of network size properly, resulting in serious collisions. To solve this problem, this paper proposes a backoff algorithm based on self-adaptive contention window update factor for IEEE 802.11 DCF. In WLANs, this proposed backoff algorithm can greatly enhance the throughput by setting the optimal CW updating factor according to the theoretical analysis. When the number of active nodes varies, an intelligent scheme can adaptively adjust the CW updating factor to achieve the maximal throughput during run time. As a result, it effectively reduces the number of collisions, improves the channel utilization and retains the advantages of the binary exponential back-off algorithm, such as simplicity and zero cost. In IEEE 802.11 distributed coordination function (DCF) protocol, the numerical analysis of physical layer parameters show that the new backoff algorithm performance is much better than BEB, MIMD and MMS algorithm.  相似文献   

4.
葛永明  朱艺华  龙胜春  彭静 《电子学报》2010,38(8):1841-1844
 在基于IEEE 802.11的移动自组织网络中,MAC(Medium Access Control)层提供了DCF(Distributed Coordinate Function)以控制节点对无线信道的争用.DCF包括了BEB (Binary Exponential Backoff)算法.该文对BEB的重要参数——竞争窗口CW(Contention Window)进行研究,通过随机建模,导出了竞争窗口长度的概率分布,并进行数值分析.研究结果可应用于IEEE 802.11移动自组织网络.  相似文献   

5.
Based on the standardized IEEE 802.11 Distributed Coordination Function (DCF) protocol, this paper proposes a new backoff mechanism, called Smart Exponential‐Threshold‐Linear (SETL) Backoff Mechanism, to enhance the system performance of contention‐based wireless networks. In the IEEE 802.11 DCF scheme, the smaller contention window (CW) will increase the collision probability, but the larger CW will delay the transmission. Hence, in the proposed SETL scheme, a threshold is set to determine the behavior of CW after each transmission. When the CW is smaller than the threshold, the CW of a competing station is exponentially adjusted to lower collision probability. Conversely, if the CW is larger than the threshold, the CW size is tuned linearly to prevent large transmission delay. Through extensive simulations, the results show that the proposed SETL scheme provides a better system throughput and lower collision rate in both light and heavy network loads than the related backoff algorithm schemes, including Binary Exponential Backoff (BEB), Exponential Increase Exponential Decrease (EIED) and Linear Increase Linear Decrease (LILD). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The distributed coordination function (DCF) of IEEE 802.11 standard adopts the binary exponential backoff (BEB) for collision avoidance. In DCF, the contention window is reset to an initial value, i.e., CWmin, after each successful transmission. Much research has shown that this dramatic change of window size may degrade the network performance. Therefore, backoff algorithms, such as gentle DCF (GDCF), multiplicative increase–linear decrease (MILD), exponential increase–exponential decrease (EIED), etc., have been proposed that try to keep the memory of congestion level by not resetting the contention window after each successful transmission. This paper proposes a multichain backoff (MCB) algorithm, which allows stations to adapt to different congestion levels by using more than one backoff chain together with collision events caused by stations themselves as well as other stations as indications for choosing the next backoff chain. The performance of MCB is analyzed and compared with those of 802.11 DCF, GDCF, MILD, and EIED backoff algorithms. Simulation results show that, with multiple backoff chains and collision events as reference for chain transition, MCB can offer a higher throughput while still maintaining fair channel access than the existing backoff algorithms.  相似文献   

7.
Wu  Qiong  Zheng  Jun 《Wireless Networks》2015,21(1):1-11

This paper considers the fair access problem in vehicular ad hoc networks and develops analytical models for analyzing the performance of an IEEE 802.11 distributed coordination function based fair channel access protocol in a non-saturated state. We first derive the relationship between the transmission probability and the minimum contention window size of a vehicle, and the relationship between the velocity and the minimum contention window size of a vehicle in a non-saturated state. Based on the analytical model, the minimum contention window size of a vehicle for a given velocity can be determined in order to achieve fair access among different vehicles. Moreover, an analytical model is also developed for analyzing the throughput performance of the fair channel access protocol in a non-saturated state. The effectiveness of the analytical models is justified through simulation results.

  相似文献   

8.
In this paper, we propose an effective medium access mechanism to enhance performance of the IEEE 802.11 distributed coordination function (DCF). One of the primary issues of 802.11 is a contention-based medium access control (MAC) mechanism over a limited medium, which is shared by many mobile users. In the original 802.11 DCF, the binary exponential backoff algorithm with specific contention window size is employed to coordinate the competition for shared channel. Instead of binary exponential increase, we adopt linear increase for the contention window that is determined according to the competing number of nodes. We also assume that the access point can broadcast the number of mobile nodes to each station through management frames. An analytical model is developed for the throughput performance of the wireless medium. Using simulation results from the NS2 simulator, we show that our model can accurately predict the system saturation throughput, and can obtain better performance in terms of throughput, fairness, and packet drop.  相似文献   

9.
使用NS仿真软件,仿真分析了采用IEEE 802.11b DCF作为信道接入协议的无线自组织网络的效果异常问题。通过"修改传输数据帧长度"和"修改竞争窗口大小",对效果异常问题的缓解情况进行仿真。仿真结果证明了两种解决方案的有效性。  相似文献   

10.
The hidden‐terminal problem significantly degrades the performance of IEEE 802.11 DCF. Many previous works have investigated its influence on the throughput of CSMA‐based medium access control (MAC) protocols, especially IEEE 802.11 DCF. In this paper, we introduce a new Jamming problem for IEEE 802.11‐based mobile ad hoc networks, which is caused by hidden terminals. An analytical model is established for this problem. Based on this model, an adaptive DCF (ADCF), is designed to solve the jamming problem through adaptively adjusting the minimum contention window of hidden terminals. Simulation results effectively demonstrate that the proposed A‐DCF can avoid the jamming and in turn greatly improve channel utilization and throughput. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The visible light communication (VLC) network is usually relatively small scale and can provide high-data-rate information transmission, where multiple users get access to the network according to the carrier sense multiple access with collision avoidance (CSMA/CA) mechanism specified by IEEE 802.15.7 standard. In this paper, we propose a novel dynamic contention window with successive transmission (DCW-ST) scheme to improve the performance of this channel access mechanism and to achieve better network throughput without delay performance degradation. Specifically, we propose to adjust the contention window dynamically to adapt to the time-changing network size. Further, we derive the contention window size to achieve trade-off of throughput and delay, and the minimum contention window size required for the throughput enhancement. In addition, in order to further improve the delay performance, we present a successive transmission scheme that allows the nodes which have completed one transmission successfully to get the chance of transmitting information successively according to the network condition. Simulations are performed for the VLC system in saturated traffic and compared with the theoretical performances, which demonstrate that our proposed scheme outperforms the legacy CSMA/CA of IEEE 802.15.7.  相似文献   

12.
IEEE 802.11, the standard of wireless local area networks (WLANs), allows the coexistence of asynchronous and time-bounded traffic using the distributed coordination function (DCF) and point coordination function (PCF) modes of operations, respectively. In spite of its increasing popularity in real-world applications, the protocol suffers from the lack of any priority and access control policy to cope with various types of multimedia traffic, as well as user mobility. To expand support for applications with quality-of-service (QoS) requirements, the 802.11E task group was formed to enhance the original IEEE 802.11 medium access control (MAC) protocol. However, the problem of choosing the right set of MAC parameters and QoS mechanism to provide predictable QoS in IEEE 802.11 networks remains unsolved. In this paper, we propose a polling with nonpreemptive priority-based access control scheme for the IEEE 802.11 protocol. Under such a scheme, modifying the DCF access method in the contention period supports multiple levels of priorities such that user handoff calls can be supported in wireless LANs. The proposed transmit-permission policy and adaptive bandwidth allocation scheme derive sufficient conditions such that all the time-bounded traffic sources satisfy their time constraints to provide various QoS guarantees in the contention free period, while maintaining efficient bandwidth utilization at the same time. In addition, our proposed scheme is provably optimal for voice traffic in that it gives minimum average waiting time for voice packets. In addition to theoretical analysis, simulations are conducted to evaluate the performance of the proposed scheme. As it turns out, our design indeed provides a good performance in the IEEE 802.11 WLAN's environment, and can be easily incorporated into the hybrid coordination function (HCF) access scheme in the IEEE 802.11e standard.  相似文献   

13.
最大化802.11 DCF的饱和吞吐量对充分利用无线局域网宝贵的带宽资源具有重要意义。该文在分析802.11 DCF的饱和吞吐量与最小竞争窗口、最大回退等级、网络中竞争信道的节点数的关系的基础上,推导了根据网络中竞争信道的节点数,计算最小竞争窗口的最佳值的简单公式。给出了估计竞争信道的节点数并据此动态调整最小竞争窗口的最佳值的自适应算法。同时,该文对估计竞争节点数的算法的准确性和计算最小竞争窗口最佳值的公式的准确性进行了仿真分析,并比较了改进后的802.11 DCF的饱和吞吐量与原802.11 DCF的饱和吞吐量的大小。仿真结果证明了上述公式、算法是准确和有效的。  相似文献   

14.
多类别终端无线局域网实时业务性能研究   总被引:3,自引:0,他引:3  
针对具有不同MAC参数和应用类型的终端在IEEE802.11DCF无线局域网内共存的情况,使用离散Markov模型分析信道在饱和状态时的竞争特性,研究实时业务吞吐量、竞争延迟和丢失率等性能指标与协议参数和数据帧长度的关系。计算和仿真实验结果的对比验证了分析模型的正确性,表明部分终端协议参数的改变会引起所有业务性能变化,而合理调整最小竞争窗口和最大回退次数可以改善实时业务的性能。  相似文献   

15.
Wireless local area networks (WLANs) are extremely popular being almost everywhere including business, office and home deployments. The IEEE 802.11 protocol is the dominating standard for WLANs. The essential medium access control (MAC) mechanism of 802.11 is called distributed co‐ordination function (DCF). This paper provides a simple and accurate analysis using Markov chain modelling to compute IEEE 802.11 DCF performance, in the absence of hidden stations and transmission errors. This mathematical analysis calculates in addition to the throughput efficiency, the average packet delay, the packet drop probability and the average time to drop a packet for both basic access and RTS/CTS medium access schemes. The derived analysis, which takes into account packet retry limits, is validated by comparison with OPNET simulation results. We demonstrate that a Markov chain model presented in the literature, which also calculates throughput and packet delay by introducing an additional transition state to the Markov chain model, does not appear to model IEEE 802.11 correctly, leading to ambiguous conclusions for its performance. We also carry out an extensive and detailed study on the influence on performance of the initial contention window size (CW), maximum CW size and data rate. Performance results are presented to identify the dependence on the backoff procedure parameters and to give insights on the issues affecting IEEE 802.11 DCF performance. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
有限负载下802.11 DCF的性能分析及优化   总被引:2,自引:0,他引:2       下载免费PDF全文
利用三维马尔可夫链和M/G/1/K队列建立了有限负载下DCF机制的性能模型,分析了终端数量、传输负载、二进制指数回退机制及MAC层有限队列对系统性能的影响.基于该模型,推导了有限负载下最大化吞吐量的最优最小竞争窗口的闭式解.仿真结果表明,模型能够有效地预测有限负载下DCF的性能,根据传输负载调整最小竞争窗口大小能够获得最大化吞吐量.  相似文献   

17.
A Cross-Layer Approach for WLAN Voice Capacity Planning   总被引:1,自引:0,他引:1  
This paper presents an analytical approach to determining the maximum number of on/off voice flows that can be supported over a wireless local area network (WLAN), under a quality of service (QoS) constraint the authors consider multiclass distributed coordination function (DCF) based medium access control (MAC) that can provision service differentiation via contention window (CW) differentiation. Each on/off voice flow specifies a stochastic delay bound at the network layer as the QoS requirement. The downlink voice flows are multiplexed at the access point (AP) to alleviate the MAC congestion, where the AP is assigned a smaller CW compared to that of the mobile nodes to guarantee the aggregate downlink throughput. There are six-fold contributions in this paper: 1) a nonsaturated multiclass DCF model is developed; 2) a cross-layer framework is proposed, which integrates the network-layer queueing analysis with the multiclass DCF MAC modeling; 3) the channel busyness ratio control is included in the framework to guarantee the analysis accuracy; 4) the framework is exploited for statistical multiplexing gain analysis, network capacity planning, contention window optimization, and voice traffic rate design; 5) a head-of-line outage dropping (HOD) scheme is integrated with the AP traffic multiplexing to further improve the MAC channel utilization; 6) performance of the proposed cross-layer analysis and the associated applications are validated by extensive computer simulations.  相似文献   

18.
Data relay satellite (DRS) systems play an important role in space information networks. Characterized by highly dynamic topology and discontinuous communication links, it is suggested that the IEEE 802.11 protocol employed in such a network could be more flexible. However, such a terrestrial network protocol could not be applied to DRS systems directly, nor supports a fast response due to the long propagation delay and severe packet collision. To address this challenge, we proposed an enhanced media access control (MAC) protocol based on the IEEE 802.11 protocol providing multiaccess for low earth orbit (LEO) distributed constellations. In this paper, we investigated the access delay performance of the proposed protocol in our model. Then, we derived a contention window adaption by using an iteration algorithm that can dynamically adjust the values of the contention window depending on the number of user satellites in the communication coverage. Simulation results show that the average access delay does not exceed 20 seconds, which is significantly lower than the standard protocol. Moreover, the traffic threshold is increased to 0.6, and the maximum throughput has doubled compared with the standard protocol. It is proved that the enhanced MAC protocol shows a better performance in DRS systems.  相似文献   

19.
In the IEEE 802.11 wireless LAN (WLAN), the fundamental medium access control (MAC) mechanism—distributed coordination function (DCF), only supports best‐effort service, and is unaware of the quality‐of‐service (QoS). IEEE 802.11e enhanced distributed channel access (EDCA) supports service differentiation by differentiating contention parameters. This may introduce the problem of non‐cooperative service differentiation. Hence, an incompletely cooperative EDCA (IC‐EDCA) is proposed in this paper to solve the problem. In IC‐EDCA, each node that is cooperative a priori adjusts its contention parameters (e.g., the contention window (CW)) adaptively to the estimated system state (e.g., the number of competing nodes of each service priority). To implement IC‐EDCA in current WLAN nodes, a frame‐analytic estimation algorithm is presented. Moreover, an analytical model is proposed to analyze the performance of IC‐EDCA under saturation cases. Extensive simulations are also carried out to compare the performances of DCF, EDCA, incompletely cooperative game, and IC‐EDCA, and to evaluate the accuracy of the proposed performance model. The simulation results show that IC‐EDCA performs better than DCF, EDCA, and incompletely cooperative game in terms of system throughput or QoS, and that the proposed analytical model is valid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
冯辉  王挺  胡波 《通信学报》2006,27(7):94-99
802.11 WLAN基础架构BSS(基础服务集)的DCF模式下,有两个因素严重影响可用带宽.一是随着竞争站点数增加,信道竞争开销增大,利用率下降;二是AP(接入点)在竞争信道中并无优势,上下行带宽严重不对称,降低了实际利用率.针对这两个问题提出一种新的MAC机制,首先通过在AP端统计MAC地址来估计竞争站点数,然后根据数学模型计算AP和站点上下行比例控制下的最优初始竞争窗值,通过广播设置以获取信道最大利用率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号