首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
王永龙  王洪岩 《辽宁化工》2012,41(2):139-141
MAP法处理垃圾渗滤液,以Na2HPO4·12H2O和MgSO4·7H2O为试验药剂对垃圾渗滤液中高氨氮进行处理,以氨氮作为考察指标,根据单因素试验确定其最佳的工艺条件.试验研究表明:在室温条件下,pH=8.5、M矿∶NH4+∶PO43-的最佳物质摩尔投配比为1.3∶1∶1.2、反应时间20 min、对垃圾渗滤液中的氨氮去除率达到94%,为后续处理奠定了良好的基础.  相似文献   

2.
磷酸铵镁法处理高浓度氨氮废水的研究   总被引:2,自引:1,他引:1  
研究采用磷酸铵镁沉淀法,以MgO和Na2HPO4·12H2O为沉淀剂对4 028 mg/L的模拟高浓度氨氮废水进行处理,考察了pH和药剂配比对磷酸铵镁法沉淀效率的影响,获得磷酸铵镁法对高浓度氨氮废水的最佳处理条件为pH=9.5、MgO与Na2HPO4·12H2O药剂以及废水中氨氮物质的量比(n(Mg)∶n(P)∶n(N)]为2.4∶0.95∶1.在最佳条件下,利用磷酸铵镁法对模拟高浓度氨氮废水中的氨氮去除率为93.6%,对实际工业废水中的氨氮去除率为90%.  相似文献   

3.
张志军  王中琪  吴兴贵 《广东化工》2011,38(9):102-103,101
采用微电解-絮凝工艺处理皂素废水,COD去除率可提高至90%。铁碳质量比为1∶1,原水pH=1.1,HRT=90 min为微电解—絮凝工艺的最佳条件。在此条件下投加H2O2对该工艺进行强化,当H2O2投加量为8 mL/L时,COD去除率可达57%,B/C显著提高,同时对皂素废水中的氨氮、TP、色度也有很好的去除效果。  相似文献   

4.
MAP法预处理高氨氮垃圾渗滤液的试验研究   总被引:3,自引:1,他引:2  
采用磷酸铵镁沉淀法(MAP法)去除老龄垃圾渗滤液中的氨氮。试验结果表明,在pH值为8.25,Mg、N、P的量比为1.3∶1∶0.8,反应时间为2h,搅拌速度为200r/min,沉淀时间为30min的条件下,对氨氮、COD的质量浓度分别为1515、3295mg/L的垃圾渗滤液,氨氮的去除率达到91.2%,COD的去除率为26%,为后续生化处理创造了条件。  相似文献   

5.
马万征  周四喜  周亚锋  张瑞  陈冬 《应用化工》2013,(2):257-258,263
通过单因素变量实验研究了MAP法处理氨氮废水的处理效果,分析了反应温度、pH值、反应物投放比例和氨氮浓度对氨氮去除率的影响。实验表明,温度为30℃,pH=9.5~10,n(Mg2+)∶n(PO34-)∶n(NH4+)=1∶1.2∶1时,氨氮去除率分别达到最佳;在相同条件下,一定浓度范围内,随着氨氮浓度的增加,去除效果有增加的趋势。  相似文献   

6.
投菌法处理微污染河水的试验研究   总被引:2,自引:0,他引:2  
研究投菌法处理微污染河水的可行性,通过静态试验研究多菌种混合投加的最佳投加量,选择对COD去除率较高的酵母菌作为cOD主降解菌,对氨氮去除率较高的放线菌和乳酸菌作为氨氮主降解菌,枯草芽孢杆菌和絮凝菌作为辅助降解菌.使用软件进行优化分析,使COD去除率和氨氮去除率同时达到最大值,得到五种菌的最佳投加量为:酵母菌0.725 mL、放线菌1.355 mL、乳酸菌2.250 mL、枯草芽孢杆菌0.215 mL、絮凝菌0.215 mL(菌液OD660值为0.5时,对100mL原水的投加量),此时COD去除率为50.5%,氨氮去除率为62.3%.  相似文献   

7.
MAP法处理高浓度氨氮老龄垃圾渗滤液研究   总被引:1,自引:1,他引:0  
李国生  颜杰  李红  邵旭  王秀丽 《广东化工》2011,38(5):175-177
针对老龄垃圾渗滤液中的高浓度氨氮,采用MAP法进行去除研究。结果表明,在pH为9.5,P∶N∶Mg摩尔比为1.0∶1.0∶1.3,搅拌速度为240 r/min,分两次投加镁盐,在总反应时间为50 min的条件下,NH3-N去除率可以达到94.1%,COD去除率为14.9%。处理后垃圾渗滤液的NH3-N值为97 mg/L,COD值为3086 mg/L,降低了后续处理负荷。  相似文献   

8.
以联碱生产清洗废水为研究对象,探索了p H值、化学药剂投放配比、反应时间、不同镁源材料对MAP法去除氨氮的影响。结果表明,在反应温度为室温(25±1)℃,p H值为10.5,物质的量比n(Mg2+)∶n(PO43-)∶n(NH4+)为1.2∶1∶1时,氨氮去除效果最佳,去除率达到98.4%;可溶性镁源优于Mg O,其中Mg Cl2·6H2O的效果更好;碱业生产废水的氨氮去除率和残留浓度随氨氮初始浓度而变化,中等浓度时,氨氮去除率较高、氨氮残留浓度和磷残留浓度较低,氨氮初始浓度为1000~3000 mg/L,氨氮残留浓度皆在50 mg/L以下,MAP法可有效降低后续深度处理负荷,同时获得缓释肥。  相似文献   

9.
MAP法去除垃圾渗滤液中氨氮的实验研究   总被引:2,自引:0,他引:2  
采用化学药剂MgCl2 ·6H2 O和NaH2 PO4 使NH 4-N生成磷酸铵镁 (MAP)沉淀 ,以去除垃圾渗滤液中高浓度的氨氮。结果表明 ,若投加MgCl2 ·6H2 O和NaH2 PO4 ,在最佳pH8.5条件下 ,控制Mg2 :PO3- 4:NH 4的比例为 1:1:1左右时 ,渗滤液中氨氮的去除率可达 98%以上。  相似文献   

10.
用絮凝-Fenton氧化混凝法处理常州某印染厂的退浆废水,絮凝剂采用自制的聚硅酸硫酸铝(PASS),絮凝处理最佳工艺条件:30℃,废水初始pH为5~10,絮凝剂投加质量浓度为22.5 g/L,最佳条件下COD去除率可达38.8%。采用Fenton氧化混凝法进行二级处理,较优的工艺参数为:pH为3~5,n(H2O2)∶n(Fe2+)=2∶1,H2O2投加量为0.15 mol/L,PAM的投加质量浓度为1.75~2.25 mg/L。两步处理后总的COD去除率可达90%左右,B/C由原来的0.11升到0.32。  相似文献   

11.
Fenton法对丁苯橡胶废水中COD和磷的去除研究   总被引:1,自引:0,他引:1  
为解决丁苯橡胶废水处理不达标问题,采用Fenton试剂法对丁苯橡胶废水生化出水进行后续处理试验研究,考察初始pH、H2O2投加量、n(H2O2)∶n(Fe2+)、反应时间对COD、磷和SS去除率的影响。结果表明:Fenton试剂法处理丁苯橡胶废水,在初始pH为7,H2O2投加量为0.4mL,n(H2O2)∶n(Fe2+)为2∶1,反应时间为70min时,COD的去除率可达到81%左右,磷和SS的去除率接近100%。出水达到《污水综合排放标准》(GB8978—1996)一级排放标准。  相似文献   

12.
碱性条件下UV/Fe-EDTA/H2O2预处理皮革废水   总被引:1,自引:0,他引:1  
采用UV/Fe-EDTA/H2O2体系预处理皮革废水,考察了初始pH、反应时间、H2O2和Fe-EDTA投量对COD去除率的影响,测定了处理过程中B/C变化,同时与UV/Fenton法进行了比较.结果表明:UV/Fenton法的最佳工艺条件为FeSO425 mmol/L、H2O2 300mmol/L、pH=5.加入EDTA后,反应的最佳初始pH碱移,UV/Fe-EDTA/H2O2体系于pH为8.0时,反应10 min COD去除率可达51.9%,而pH为5.0时UV/Fenton体系处理10 min后COD去除率仅37.90%.对比降解效果.UV单独作用效果不理想,60 min后COD去除率仅25%.引入UV后,Fenton法处理效果提高,60 min后COD去除率由37.0%提高至59.3%,加入EDTA后最终COD去除率与UV/Fenton法接近.经光照处理的废水B/C呈先降后升趋势,经UV/Fenton处理后,原水B/C由0.3提高至0.35,经UV/Fe-EDTA/H2O2处理的废水最终B/C略有降低.  相似文献   

13.
含氨氮废水生物处理研究   总被引:2,自引:0,他引:2  
利用培养的硝化细菌处理含氨废水,当氨氮含量为1500 mg/L时,连续试验装置水力停留时间14 h出水氨氮即可低于10mg/L,氨氮去除率达95%以上;培养的硝化菌可以耐受COD含量140 mg/L的炼油废水并保持较高脱氨氮活性,氨氮含量120 mg/L左右的炼油废水经处理后,出水氨氮小于10 mg/L.  相似文献   

14.
MAP法是一种比较新颖有效的处理氨氮的方法 ,该方法是通过化学沉淀的方式使废水中的氨氮浓度降到很低。而且沉淀反应不受温度、水中毒素的限制。找出了 MAP法处理氨氮废水的最佳条件。由单项试验以及正交试验的方法对 MAP法处理氨氮废水的工艺进行优化研究 ,结果表明 :在 p H=8.5 ,反应时间为 2 h,Mg∶ N∶P=1 .4∶ 1∶ 1 .1时为较佳反应条件 ;氨氮的去除率随着反应时间的增加而增加 ,随着 Mg∶ N的比值的增加而增加。  相似文献   

15.
固废填埋场渗滤液经过蒸发后的RO浓水具有高浓度氨氮、低浓度杂质离子的特点。采用MAP法去除RO浓水中的氨氮,采用单因素实验确定了某固废填埋场RO浓水的药剂组合:磷酸氢二钠和氯化镁;最佳反应条件:初始pH值为10;Mg∶N∶P的摩尔比1.2∶1∶1.3,反应时间30 min,氨氮的去除率99.7%,剩余氨氮为3.79 mg·L-1。MAP法对溶解性COD去除效果较差。  相似文献   

16.
新型Fenton工艺对垃圾渗滤液MBR出水预处理研究   总被引:1,自引:0,他引:1  
采用Fenton-原水调节pH工艺对垃圾填埋场MBR工艺段出水进行预处理。在n(H2O2):n(Fe2+)=1:1,反应时间为60 min时,H2O2投加量为0.029 mol/L,出水COD、TOC、UV254去除率可分别达到52.6%、50%和64.4%,出水COD为341.6 mg/L;H2O2投加量为0.035 mol/L,出水COD、TOC、UV254去除率可分别达到49%、43.4%和55%,出水COD为67.4 mg/L,可以使用BAF工艺进行后续深度处理。该工艺药剂成本低于传统Fenton工艺约60%。  相似文献   

17.
采用二次絮凝-Fenton试剂法对1,2,4-酸氧体废水进行预处理,确定了最佳处理条件.两次絮凝均投加CaO和FeSO4·7H2O作为絮凝剂,第一次絮凝时,絮凝过程中出现浆状体,直接抽滤.第二次絮凝,絮凝沉降明显.通过两次絮凝COD从原水的17 511 mg/L降至4 020.9 mg/L.Fenton试剂处理时,利用二次絮凝出水和原水调节pH,处理后COD降至605.2 mg/L.使后续处理具有较大的可行性.  相似文献   

18.
采用鸟粪石法与Fenton试剂氧化法联合处理垃圾渗滤液,探索了两种方法联合处理的最优条件。结果表明两种方法联合处理能很好地发挥各自的优势。鸟粪石法在初始p H为9.5、n(Mg2+)∶n(PO3-4)∶n(NH+4)=1.3∶1.2∶1、搅拌反应时间为30 min时,且Fenton试剂氧化法在初始p H为3.5、H2O2投加量为0.03 mol/L、n(H2O2)∶n(Fe2+)=4∶1、搅拌反应时间为2 h时,COD去除率达到86.68%,氨氮去除率达到92.27%。该处理效果明显优于单独采用鸟粪石法的处理效果(其氨氮去除率约85%、COD去除率为15%~20%)、单独采用Fenton试剂法的处理效果(其COD去除率约55%、氨氮去除率几乎为零)及两种方法顺序调换的处理效果(其COD去除率约40%、氨氮去除率约20%)。  相似文献   

19.
Fenton氧化法处理高盐榨菜废水的研究   总被引:2,自引:0,他引:2  
用Fenton氧化法处理高盐榨菜废水,结果表明:室温下,在进水pH为4.4~5.0,H2O2投加浓度80 mmol/L,n(H2O2)∶n(FeSO4·7H2O)=4,反应时间20 min时,COD、磷酸盐的去除率分别为29.0%、15.4%,调节反应出水pH,对COD和磷酸盐的去除率有较大影响,当调节出水pH=6时,COD、磷酸盐的去除率分别上升到51.0%、99.5%,取得了较好的处理效果.  相似文献   

20.
以某化肥厂氨氮废水为研究对象,采用磷酸铵镁(MAP)沉淀法去除废水中氨氮,同时合成磷酸铵镁(鸟粪石)晶体。沉淀后上清液测定氨氮和总磷含量。MAP法去除氨氮的最佳条件,结果表明,以MgCl_2为镁盐,pH在10.5左右,n(P)∶n(N)=1.2。在此条件下,废水中氨氮去除率可达85.72%,废水氨氮浓度达到后期生化处理要求。扫描电镜和X射线衍射仪分析表明,生成的鸟粪石纯度较高,沉淀效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号