首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
添加稀土元素对Ni-P/PVDF化学复合镀层耐蚀性的影响   总被引:1,自引:0,他引:1  
在化学镀Ni-P/PVDF合金镀液中添加稀土元素Y3+和La3+制备Ni-P/PVDF(RE)复合镀层,用电化学腐蚀测试系统测试复合镀层的耐蚀性,研究了稀土元素的添加量对镀层耐蚀性能的影响。结果表明,在基础镀液中加入适量稀土元素后,所获得的Ni-P/PVDF(RE)复合镀层的晶粒较Ni-P/PVDF镀层更为细小,表面更加均匀和致密;镀层的耐蚀性随着稀土元素加入量的增加呈现先增强后减弱的趋势;在稀土元素的添加量为0.1g/L时,复合镀层的耐蚀性最好。在PVDF微粒和稀土元素的共同影响下,进一步提高Ni-P/PVDF(RE)镀层的耐蚀性。  相似文献   

2.
利用电沉积方法制备了n-Al2O3/Ni复合镀层.研究了镀液中添加不同纳米颗粒浓度对复合镀层沉积速率、电流效率、镀层中纳米颗粒共析量、表面形貌及腐蚀电位的影响.研究表明,随着镀液中纳米颗粒浓度提高,镀层中的纳米颗粒共析量也随之提高,在20 g/L时趋于稳定;沉积速度和电流效率先增后降,在30 g/L时达到最大;纳米颗粒的加入改变并细化了镀层的表面形貌;当纳米颗粒浓度20 g/L和30 g/L时镀层表现出较好的耐腐蚀性能.  相似文献   

3.
为进一步提高Ni-P合金镀层的耐蚀性,在Ni-P镀液中添加了不同质量分数的硫酸亚铁(Fe SO4),制备了Ni-Fe-P三元合金镀层。通过扫描电镜观察了镀层的表面形貌,采用能谱仪测试了镀层中各元素的质量分数,采用X-射线衍射仪对各镀层的结构进行了测试,通过交流阻抗考察了各个镀层的耐蚀性。结果表明:该工艺制备的Ni-Fe-P镀层属于高磷镀层,当镀液中Fe SO_4含量分别为0.2、0.5和0.8 g/L时,Ni-Fe-P镀层中Fe元素的质量分数呈下降趋势,镀层在Na Cl溶液中发生腐蚀时的电荷转移电阻不断减小,镀层的耐蚀性逐渐下降。  相似文献   

4.
高化伟 《物理测试》2006,24(6):11-0
 通过扫描电镜、电化学分析和腐蚀失重等方法,研究了镀液中添加RE对双脉冲电沉积法获得镍镀层的耐蚀性影响。结果表明:镀液中添加适量的RE,可使镀层组织细小且表面平整致密,耐蚀性提高,当镀液中含RE量为0.25 g/L时,镀层耐蚀性较好。  相似文献   

5.
利用电沉积方法制备了n–Al2O3/Ni复合镀层。研究了镀液中添加不同纳米颗粒浓度对复合镀层沉积速率、电流效率、镀层中纳米颗粒共析量、表面形貌及腐蚀电位的影响。研究表明,随着镀液中纳米颗粒浓度提高,镀层中的纳米颗粒共析量也随之提高,在20 g/L时趋于稳定;沉积速度和电流效率先增后降,在30 g/L时达到最大;纳米颗粒的加入改变并细化了镀层的表面形貌;当纳米颗粒浓度20 g/L和30 g/L时镀层表现出较好的耐腐蚀性能。  相似文献   

6.
温度对化学镀 Ni-P 合金层形貌、硬度及耐蚀性的影响   总被引:5,自引:5,他引:0  
金永中  杨奎  曾宪光  倪涛  丁松 《表面技术》2015,44(4):23-26,31
目的揭示在70~95℃施镀温度范围,Ni-P合金镀层显微形貌的变化规律,并探讨表面形貌结构、合金硬度及耐蚀性能的相关性。方法以施镀温度为变量,通过化学沉积的方法制备Ni-P合金镀层。对镀层表面形貌进行表征,测试镀层硬度,并采用盐酸为腐蚀介质进行浸泡,以相对腐蚀速率表征镀层的耐蚀性。结果在70~95℃的施镀温度范围内,随着温度升高,镀层形貌先趋于致密和平整,而后表面粗化,镀层的硬度和耐蚀性均呈现先提高、后降低的趋势。最佳镀层形貌和硬度值出现在85℃,耐蚀性最好的施镀温度区间为85~90℃。结论当镀液p H值为4.5±0.1,施镀时间为3 h时,施镀的最佳温度为85℃。此条件下制备的镀层表面平整且均匀致密,硬度高,耐蚀性能优异。  相似文献   

7.
在化学镀液中添加Nd3+,研究其浓度对Ni-P镀层与烧结Nd-Fe-B磁体的结合力和施镀后磁体耐蚀性的影响.测定添加不同浓度Nd3+镀液中所得Ni-P镀层与磁体的结合力,以及镀层在3.5%NaCl(质量分数,下同)溶液中的极化曲线,并结合中性盐雾实验表征施镀后磁体耐蚀性.结果表明,添加2.5 g·L-1Nd3+时,Ni-P镀层与Nd-Fe-B磁体的结合力从6.4 MPa提高至25.2 MPa:施镀后磁体的自腐蚀电位从-0.382 V升高到-0.148 V,自腐蚀电流密度从4.52μA·cm-2降低到0.07μcm-2,耐盐雾腐蚀时间达到256 h,磁体耐蚀性显著提高.  相似文献   

8.
针对飞机结构用铝合金在使用过程中容易发生腐蚀的缺点,采用化学镀工艺在2024航空铝合金表面制备了Ni-P合金、Ni-W-P合金和Ni-P-MWCNTs复合镀层3种镀层,研究多臂碳纳米管(MWCNTs)与Na_2WO_4添加量对镀层沉积速率的影响,并对三种镀层的表面微观形貌、结合力、疏水性能、耐蚀性等进行观察与分析。结果表明:Ni-P-MWCNTs复合镀层的沉积速率随着WMCNTs量的增加呈现先增后减,当WMCNTs加入量为0.3g/L时,其沉积速率达到最大值10.03mg/(cm~2·h)。Ni-W-P合金镀层的沉积速率随着Na2WO4加入量的增大而增大并逐渐趋于稳定,当Na_2WO_4加入量为18g/L时,沉积速率达到15.21mg/(cm~2·h)。几种试样的综合性能由强到弱依次为Ni-W-P镀层Ni-P-MWCNTs镀层Ni-P镀层基体试样。  相似文献   

9.
为提高1060铝合金的耐腐蚀性能和耐磨性能,采用电化学技术、SEM和XRD等方法,研究了柠檬酸对1060铝合金化学镀Ni-W-P镀液的沉积速率、镀层的孔隙率、腐蚀电位、交流阻抗、维氏硬度、形貌等的影响。结果表明,添加柠檬酸,镀液沉积速率有所降低,但是,Ni-W-P镀层的表面平滑光亮,结合力良好,耐蚀性提高。当柠檬酸含量为25 g/L时,镀层的点滴液变色时间最长,为605 s,镀层的孔隙率为0,腐蚀电流密度最小(2.95μA/cm~2),腐蚀电位最大,为-0.384 V,比1060铝合金的正移0.889 V,腐蚀倾向变小。镀层呈典型的花椰菜包状物结构,添加柠檬酸之后,包状物细化,镀层组织结构更紧密均匀,无孔隙,镀层磷含量提高,使镀层由非晶态和微晶构成的混晶结构向非晶态转变,是其耐蚀性高的重要原因,提高钨含量使镀层硬度增加,为174 HV,是1060铝合金基体的4倍。  相似文献   

10.
采用增重法、精密pH计、扫描电镜(SEM)和动电位极化曲线测定和分析了镀液的镀速、镀液的缓冲性、镀层的表面形貌和镀层的耐蚀性,研究了不同浓度NH_4HF_2对AZ31镁合金化学镀镍层性能的影响.结果表明,NH_4HF_2的浓度影响镀液的镀速及缓冲性、镀层的形貌及耐蚀性.当NH_4HF_2的质量浓度为5~15 g/L时,镀速随浓度的增加递增,而当NH_4HF_2的质量浓度为15~25 g/L时,镀速随浓度的增加而减少;镀液缓冲性随NH_4HF_2浓度的增加而提高.当NH_4HF_2的质量浓度为15 g/L时,镀速达到最大值21.9μm/h;当NH_4HF_2的质量浓度为20 g/L时,镀层致密完整且阳极极化曲线的钝化电位区间最大,自腐蚀电流密度最小,因此,此时镀层的耐蚀性最好.  相似文献   

11.
表面活性剂对Ni-P-Al2O3复合镀层性能的影响   总被引:3,自引:3,他引:0  
目的 改善Ni-P-纳米Al2O3复合镀层的均匀性,提高其耐蚀性能.方法 采用化学镀法在Q235钢表面制备Ni-P纳米Al2O3复合镀层,分析纳米Al2O3添加量(0~10g/L)对镀层形貌的影响.施镀过程中选用不同种类的表面活性剂来分散纳米Al2O3,通过XRD分析镀层的相组成,采用SEM、EDS研究镀层形貌和成分,通过测量施镀前后纳米Al2O3的Zeta电位来研究非均一镀液的稳定性和纳米粒子的分散性能,利用电化学阻抗手段研究镀膜样品在3.5%NaCl水溶液中的耐蚀性能,从而分析镀液中表面活性剂的种类和用量对复合镀层的影响.结果 随着镀液中纳米粒子添加量的增加,镀层中Al2O3含量先增加后趋于稳定,同时镀层表面纳米Al2O3团聚现象也随之加剧.添加一定量表面活性剂之后,镀层变得均匀,纳米粒子团聚减少,其中阳离子表面活性剂(十六烷基三甲基溴化铵)在低浓度下就能对纳米Al2O3分散产生显著作用,而阴离子表面活性剂(十二烷基苯磺酸钠)需在较高浓度下才能达到相似效果.结论 当镀液中阴离子表面活性剂用量为1.25cmc,Al2O3添加量为6g/L时,镀层最为均匀,且样品在3.5%NaCl水溶液中耐蚀性能最好.  相似文献   

12.
通过改变镀液中H_3PO_3的添加量(15~40 g/L)制备不同P含量的Fe-Co-Ni-P镀层,采用XRD衍射仪、交流阻抗谱和超声波气蚀试验,分别研究和分析了P含量对镀层的结构以及腐蚀、气蚀性能的影响。结果表明:该四元合金镀层基本都为非晶态。随着合金镀层中P含量增加,镀层表面的胞状组织越来越细密,其耐腐蚀性能逐渐增强。当镀液中H_3PO_3添加量为40 g/L时,镀层的耐腐蚀性能最好。当镀液中H_3PO_3为15 g/L时,交流阻抗谱表现出Warburg阻抗的特征,溶液状态由电荷迁移、扩散以及化学反应混合。当镀液中H_3PO_3为20~40 g/L时,镀层的交流阻抗谱都只有一个容抗弧,表现出一个时间常数特征,且电极过程存在扩散受阻的现象。当镀液中H_3PO_3为40 g/L时,拟合的等效电路中的镀层电荷转移电阻Rf达到最大值3 494Ω?cm~2。且当镀液中H_3PO_3的添加量为40 g/L时,其镀层抗气蚀性能也最好。  相似文献   

13.
铝化学镀Ni-P的试验研究   总被引:1,自引:0,他引:1  
为了改善铝基体上化学镀Ni-P存在的镀速慢、镀层腐蚀性能差等问题,研究了稳定剂和表面活性剂对铝化学镀Ni-P镀层的沉积速度、硬度、孔隙率、结合力、耐蚀性、腐蚀电位、表面形貌等性能的影响.结果表明,铝上化学镀Ni-P的合理单组分稳定剂是KI(1 mg/L),最佳二元复合稳定剂是"KIO3(1 mg/L) Pb(Ac)2(1 mg/L)".分别加入50 mg/L表面活性剂磺基水杨酸和十二烷基磺酸钠,镀层性能普遍有所提高.  相似文献   

14.
Ni-Zn-P合金镀层在人工模拟海水中腐蚀行为的研究   总被引:2,自引:1,他引:1  
赵丹  徐旭仲  徐博 《表面技术》2016,45(4):169-174
目的 提高金属材料在海洋环境中的耐腐蚀性和使用寿命.方法 采用碱式化学镀方法 在Q235碳钢表面施镀Ni-P镀层和Ni-Zn-P合金镀层,镀液配方NiSO4·6H2 O 20~25 g/L,C6 H5 O7 Na3·2H2 O 50~70 g/L,NH4Cl 25~30 g/L,NaH2PO2·H2O 15~25 g/L.制备Ni-Zn-P合金镀层时,在以上配方中加入0.4~0.8 g/L ZnSO4·7H2 O.采用金相显微镜和扫描电子显微镜(SEM)观察镀层在人工模拟海水中腐蚀前后的组织形貌,用能谱分析仪(EDS)分析镀层腐蚀前后表面成分.结果 Ni-P镀层和Ni-Zn-P合金镀层中的P质量分数分别为11.26%和9.97%.从P含量和镀层组织形貌,可以确定得到的两种镀层是连续致密的非晶镀层.Ni-Zn-P合金镀层比Ni-P镀层的胞状组织更加均匀平滑,胞与胞的边界结合更加连续致密.在人工模拟海水中腐蚀144 h后,Ni-P镀层出现明显的点蚀坑,Ni-Zn-P合金镀层仍然连续完整.Ni-Zn-P合金镀层腐蚀后,Zn含量明显下降,并出现少量的Fe和O,表明合金镀层腐蚀过程是Zn优先被腐蚀,然后镀层逐渐被腐蚀破坏,最后基体发生腐蚀.Ni-Zn-P合金镀层的腐蚀速率明显低于Ni-P镀层的.结论 Ni-Zn-P合金镀层的胞状组织比Ni-P镀层的更加均匀平滑,胞与胞的边界结合更加连续致密,Ni-Zn-P合金镀层腐蚀速率明显低于Ni-P镀层.  相似文献   

15.
目的采用材料测试方法和防垢实验,研究不同工艺条件下的化学镀Ni-Mo-P合金镀层的组织结构与防垢性能。方法在化学镀Ni-P镀层基底上,添加含有钼酸根离子杂多酸盐,在不同工艺条件下化学沉积Ni-Mo-P合金镀层,研究化学镀Ni-Mo-P合金镀层的表面形貌和组织结构,分析镀液中硼酸含量和钼酸铵含量对镀层沉积速率的影响,观测镀层在结垢实验后的表面形貌并分析结垢速率。通过SEM,XRD和EDS对化学镀Ni-Mo-P合金镀层的表面形貌和组织结构进行检测,研究在酸性镀液中硼酸含量对化学镀Ni-Mo-P工艺条件的影响。采用防垢实验测试化学镀Ni-Mo-P合金镀层的防垢性能。结果在化学镀Ni-Mo-P过程中,钼酸根离子杂多酸盐具有稳定作用。化学镀Ni-Mo-P合金镀层的化学沉积镀液的最佳工艺条件为:Ni SO4·6H_2O 16.5 g/L,Na H_2PO_2·H_2O 20 g/L,钼酸钠0.5~0.8 g/L,硼酸2 g/L,乙酸钠7.5 g/L。化学镀Ni-Mo-P合金镀层的结垢速率明显低于化学镀Ni-P镀层,具有良好的防垢能力,形成了非晶态的镀层。结论采用化学镀Ni-P镀层基底上沉积得到非晶态的Ni-Mo-P合金镀层,硼酸具有调节镀液p H值和络合作用,非晶态的Ni-Mo-P合金镀层平均结垢速率最小值为0.58μm/h,具有良好的阻垢能力。  相似文献   

16.
采用化学镀技术在镁合金基体表面制备了Ni-Mo-P合金镀层,研究了Na_2MoO_4添加量对Ni-Mo-P镀层的微观组织、成分及耐蚀性的影响。利用扫描电镜观察了Ni-Mo-P镀层的表面和截面形貌,借助电化学工作站测试了Ni-Mo-P镀层在3.5wt%NaCl溶液中的极化曲线及阻抗谱。结果表明:Ni-Mo-P合金镀层表面形貌为胞状结构,当Na_2MoO_4添加量为0.5 g/L时,Ni-Mo-P合金镀层的胞状结构更细小,组织更紧密。0.5 g/L Na_2MoO_4添加量获得的Ni-Mo-P合金镀层的自腐蚀电位最正,为-0.8273 V,自腐蚀电流最小,为2.3041×10~(-6)A/cm~2,容抗弧半径达到最大,耐蚀性最佳。  相似文献   

17.
在酸性化学镀镍磷合金镀液中添加稀土元素(La、Pr、Nd),研究了其对镀速的影响。对镀层进行了XRD分析,用SEM观测表面形貌,EDX分析镀层组成,并进行了耐腐蚀极化曲线测定。结果表明在镀液中添加稀土离子能显著降低镀速,甚至完全终止Ni-P的沉积。镀液中添加稀土时,镀层中不含稀土元素,镀层仍为非晶态结构,但P含量略有降低,镀层的表面形貌发生了变化。镀液中含稀土(La、Pr、Nd)时,所得镀层在3.5%NaCl溶液中的自腐蚀电位降低,腐蚀电流密度增大,耐腐蚀性降低。  相似文献   

18.
采用化学镀方法制备了非晶态Ni-P和Ni-Yb-P镀层,研究了稀土元素Yb添加量对镀层硬度和耐磨性能的影响。结果表明,Ni-Yb-P镀层的硬度随着Yb添加量的增加而提高,当镀液中YbN3O9.5H2O的添加量为200mg/L时,镀态下镀层的耐磨性能最佳。磨损试验发现,镀态下非晶态Ni-P镀层的磨损机制为粘着磨损和犁削磨损,其耐磨性能较差;随着稀土添加量的增加,镀层耐磨性能提高,但稀土添加量过高时,镀层耐磨性能又会下降。  相似文献   

19.
赵丹  侯金明  马青青  崔睿  王亮  金洁 《表面技术》2020,49(6):284-289
目的研究稀土铈对Ni-P镀层表面组织、沉积速率和耐腐蚀性能的影响,提高沉积速率,改善镀层表面质量,进而提高镀层的耐腐蚀性能。方法采用酸式化学镀方法在50钢基体表面制备了添加稀土铈的Ni-P合金镀层,研究稀土铈的添加量对Ni-P合金镀层表面组织形貌和性能的影响。采用金相显微镜观察镀层表面组织形貌,参照GB/T13913—2008计算镀层沉积速率;使用HV-1000Z型显微硬度计测定合金镀层的硬度,采用均匀腐蚀全浸试验法测试合金镀层在5%NaCl溶液和10%NaOH溶液中的耐蚀性能。结果稀土铈的添加量为40 mg/L时得到的合金镀层组织细小、均匀、平整、致密,沉积速率达到最大值10.4 mg/(cm2·h)。随着稀土铈添加量的增加,镀层硬度明显增大,在稀土铈质量浓度为60 mg/L时,最大硬度值达到487.2HV,硬度提高了13.5%。Ni-P合金镀层在5%NaCl和10%NaOH溶液中耐腐蚀实验结果表明,未添加铈的镀层腐蚀速率最大,添加稀土铈的镀层腐蚀速率呈现先降低后增加的趋势,稀土铈质量浓度为40 mg/L时,镀层的腐蚀速率最低。结论稀土铈可以明显改善镀层表面质量,提高镀层沉积速率、硬度和耐腐蚀性能。  相似文献   

20.
目的提高Ni-P镀层的硬度。方法在化学镀Ni-P过程中添加SiO2微粒,形成Ni-P-SiO2复合镀层,研究施镀温度、微粒添加量和镀后热处理温度对复合镀层微观结构及硬度的影响。结果复合镀层含非晶结构Ni和SiO2相。随施镀温度的升高及SiO2微粒添加量的增加,镀层表面变得均匀、致密且硬度升高,显微硬度最高达355HV;当施镀温度超过80℃,微粒添加量超过10 g/L时,镀层表面均匀性变差,硬度下降。经热处理后,镀层向晶态转变,热处理温度达到300℃时开始析出Ni3P相,镀层的显微硬度随热处理温度的升高而升高。结论当施镀温度为80℃、微粒添加量为10 g/L时,所得复合镀层的性能较为优异,热处理可进一步提高复合镀层的硬度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号