首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
随着风电接入电网的比例逐渐加大,对接入点电压水平的影响越来越明显。电压稳定性是风电场并网运行存在的主要问题。目前大多采取在风电场升压站添加无功补偿装置的方式来控制并网点电压。本文主要分析风电场无功损耗的来源,结合我国内蒙古地区某风电场接入系统实际情况,利用德国电力系统仿真软件DIgSILENT进行模型搭建,提出保证风电场可靠并网的无功补偿方案,并进行算例分析。  相似文献   

2.
随着国家对风资源的大力开发利用,大量的风电场需要接入电网.风电场接入电压等级也从最初的配电网发展到高电压等级的输电网,风力发电对电力系统稳定性的影响越来越大,其中风电对系统的小干扰稳定性不容忽视.各风区之间通过主网互联,导致风力发电对系统稳定性的影响不仅仅是单个风场.还包括该风区多个风电场以及整个电网多风区风电场的影响.通过对单风区多风电场以及多风区多个风电场出力变化的分析研究,表明风电场对系统小干扰稳定性影响情况主要表现为系统的振动模式及振动特性.运用PSASP程序对中国新疆地区的典型电网仿真,验证了研究结论.分析结果对风电接入、风场运营和电网规划具有重要的参考价值.  相似文献   

3.
虽然风电在电力系统所占比重越来越大,但对风电接入比对电力系统的影响研究并不特别充分,因此通过分析双馈风力发电机的暂态特性来探究不同双馈风力发电机接入比对并网系统的暂态稳定性的影响.使用电力系统分 析仿真软件 (PSASP),并基于 PSASP中算例36节点选择不同双馈风力发电机组接入比,探究其暂态稳定性,得出了不同接入比下对系统稳定性影响的结果.  相似文献   

4.
风电场机组装机容量正逐年增加,而大规模风电接入系统对电力系统影响较大,因此研究系统故障以及风电保护配置对电网稳定运行很重要.通过对双馈异步风力发电机进行动态建模,在电力系统分析综合程序PSASP/UPI 6.28环境下,实现了风电系统的短路故障仿真,在此基础上分析了不同短路点对称和不对称故障状态下风电系统的电压、电流以及短路容量对风电并网暂态稳定性的影响等.研究结果表明风电场继电保护整定时应考虑这些影响因素,以提高风电场继电保护动作的有效性和可靠性.  相似文献   

5.
由于风电的易变性和不确定性,大比例风电接入电网时会对其运行、调度和稳定性带来影响。文章介绍了风电场并网需考虑的因素,分析了风电场并网技术和控制技术,包括调节无功容量、低电压穿越、减出力和调节有功功率变化率等。最新的风电并网技术可控制整个风电场的无功功率和有功功率,调节并网点电压,并使得风电场在电网故障条件下也能保持并网,这对于电网成功接纳高比例风电有重要作用。  相似文献   

6.
风电接入配电网,接入点不同,配电网呈现不同的故障特性,影响传统保护的动作特性。根据建立的含风电的配电网故障电流关系式,分析了风电接入对配网的影响,提出根据风电场并网位置及对保护的影响确定保护配置方案,风电场接入馈线末端时上游区域配置方向纵联保护,接入馈线首端时下游区域和相邻馈线配置自适应电流速断保护。通过FFT变换滤除故障分量中的直流分量,采用对称分量故障分量法计算保护背侧阻抗以适应风电场运行工况的多变性,提高自适应电流保护的动作性能。以PSCAD为平台构建35k V配电系统仿真模型,仿真验证了保护方案的有效性。  相似文献   

7.
基于遗传算法的风电场最优接入容量问题研究   总被引:2,自引:1,他引:1  
针对大规模风电场并网运行会引起接入系统节点电压越限、影响系统电压稳定性的问题,提出了采用遗传算法对系统稳态运行进行优化分析,并结合典型风速扰动和故障方式校验系统暂态稳定性的方法,确定风电场的最优接入容量.以某实际含风电场的电力系统为例,对所提方法的可行性和有效性进行验证,结果表明按照所提方法确定的风电场最优容量接入系统,稳态运行时可保证系统各节点电压合格,且风电场升压站母线电压和并网点电压接近额定电压,减小了风电并网对系统电压稳定性的影响;系统经历暂态过程时,可保证系统和风电场均稳定.  相似文献   

8.
大规模风电汇集地区风电机组高电压脱网机理   总被引:1,自引:0,他引:1  
大规模风电场接入弱电网时会降低电网的电压稳定裕度,增加电压调整控制的难度。从实际发生的某次风电机组高电压脱网故障出发,探讨大规模风电经远距离输电线路送出时并网点出现高电压过程的机理,建立风电场远距离并网的等效单机无穷大系统模型,得出风电场并网点电压与送出功率及无功补偿之间的关系,推导出在风电机组恒功率特性下风电并网点电压对电容补偿的灵敏度,证明当风电送出功率增大时其并网点电压的灵敏度也随之增大,说明在风电大发时投入电容补偿后会引起较大的电压增幅,存在风电机组高电压脱网的风险。通过DIgSILENT软件对某实际风电场接入地区电网进行仿真分析,验证上述结论的正确性。  相似文献   

9.
随着风电装机规模的不断扩大,大规模风电场接入地区电网后,对当地电网的电压造成影响,研究风电接入地区电网电压问题显得十分重要。以新疆哈密地区风电接入当地电网为例,统计了并网地区典型运行方式下的母线电压水平。建立风电场机组仿真模型,考虑尾流效应影响下的风速,通过实时数据进行潮流计算,分析与风电场有关的关键节点电压问题。针对当地电网的运行方式,提出了改善并网地区电压质量的措施,对投切电抗器和SVC 2种无功补偿方案进行计算并仿真了方案的可行性。在国内风机脱网的背景下,分析了投切电抗器可能对同一并网点的风电场群产生影响。  相似文献   

10.
刘婷  卢海  王玲  赵艳军 《广东电力》2013,(11):14-19
大规模风电并网运行会显著影响系统的电压稳定性,为研究风电接入对电压稳定薄弱区域的影响,在电力系统分析综合程序(Power System Analysis Software Package,PSASP)中建立了基于双馈异步风力发电机的风电场模型,以IEEE 39节点系统为例,分析和研究了正常负荷情况下和极限运行状态下风电接入对电压稳定薄弱区域的位置分布和薄弱程度的影响.仿真结果表明,通过对风电场自身的无功补偿及对风电场地址的无功储备进行合理约束,可改善风电接入系统的电压稳定性.  相似文献   

11.
风电的接入会改变电网原有的潮流分布而对电网电压稳定性产生影响。潮流计算作为风电接入系统研究的基础,为得到其计算结果的准确性而建立风电场稳态模型具有重要的意义。以往的风电场系统潮流计算都是把整个风电场等效为一个风机处理,并没有详细讨论风电场内部的电网结构,潮流计算无法深入到风电场内部。在DigSILENT / PowerFactory中建立了改进的潮流计算模型,充分考虑了由双馈异步发电机组成的大型风电场的集电系统以及风电机组间电缆的功率损耗对稳态潮流计算的影响。  相似文献   

12.
现有的风电系统电源配置方法一般通过有功矩法确定电网的连接点,难以获取电源分布的最佳定容,网损较大,配置效果不理想。针对这一问题,对风电场中分布式电源DG(distributed generation)配置方法进行了优化研究,建立了风电场中分布式电源配置的目标函数,并通过约束方程获取有功网损和分布式电源节点状态变量的越限概率;采用改进基本仿电磁学算法得到分布式电源分布的最优定容方案,实现了分布式电源的优化配置。实验结果表明,所提方法能够减少风电场的有功网损,平均配置失误率和稳定性分别为1.96%和96.2%,具有最佳的电源优化配置效果。  相似文献   

13.
统一潮流控制器在风电机组并网运行中的应用   总被引:2,自引:1,他引:1       下载免费PDF全文
大规模风电并网改变了原来电网的潮流分布、线路传输功率以及电网故障时的暂态特性。将统一潮流控制器(UPFC)应用于异步风电机组并网的环形输电网络模型中,研究UPFC改善风电并网的性能。通过设计UPFC并联侧的双闭环反馈控制,设置风电输出线路三相短路故障来研究UPFC提高风电场低电压穿越能力。再建立UPFC串联侧有功与无功的独立控制系统,向输电线路输出补偿电压,研究其优化风电并网系统的潮流分布能力。在Matlab/Simulink软件中建立模型,仿真结果表明基于UPFC强大的无功补偿能力与潮流控制能力,UPFC能够显著提高风电并网的低电压穿越能力和优化潮流分布。  相似文献   

14.
考虑风电接入的电力系统无功优化   总被引:2,自引:1,他引:1  
研究了含风电场的电力系统无功优化,提出了通过潮流计算得到风电场的无功补偿容量,利用非线性原-对偶内点法对整个电网进行无功优化的新方法。建立了风电机组的稳态模型,介绍了风电场在电力系统潮流计算中的处理方法。通过潮流计算得到风电场的无功补偿容量,建立以有功网损最小和电压水平最好的多目标无功优化模型,在满足各种约束条件下采用非线性原对偶内点法对该模型进行优化求解。通过烟台电网的实际计算结果验证了该方法的可行性和实用性。  相似文献   

15.
张硕  朱莉  杜林  齐悦  曲良可 《华中电力》2012,25(2):65-70
随着风电装机容量的增加,在风电场规划设计阶段,选择合适的并网方式对地区电网的安全稳定运行非常重要。在介绍风电场运行特性、接入电网结构特点和分析影响风电场接入电网容量因素的基础上,以某地区实际电网为算例,对风电场以不同的并网方式进行了仿真,结果表明:在风电场出力稳定的情况下,分布式接入比集中方式接入具有较强的电压支撑能力;在风电场并网线路参数一致的情况下,分布式接入与集中方式相比,线损较小;在风电场受到渐变风、阵风、切除风影响时,风电场集中接入方式电压波动较小,分布式接入方式电压波动较大,集中接入方式有较强的电压抗扰动能力。  相似文献   

16.
基于P-V曲线的风电场接入系统稳态分析   总被引:24,自引:13,他引:11  
提出了基于P-V曲线的风电场接入系统稳态分析方法以及两个风电场同时接入系统的分析方法,该方法能够提供电压偏移量、电压波动范围等信息。章还分析了风电场接入系统的电压要求及风电场运行对区域电网网损的影响,由仿真结果可见,风电场接入系统的最低电压应高于系统检修时的最低电压,而且风电场的接入有利于减少系统的网损。  相似文献   

17.
This paper provides a probabilistic method to assess the impact of wind turbines (WTs) integration into distribution networks within a market environment. Combined Monte Carlo simulation (MCS) technique and market-based optimal power flow (OPF) are used to maximize the social welfare by integrating demand side management (DSM) scheme considering different combinations of wind generation and load demand over a year. MCS is used to model the uncertainties related to the stochastic variations of wind power generation and load demand. The market-based OPF is solved by using step-controlled primal dual interior point method considering network constraints. The method is conceived for distribution network operators (DNOs) in order to evaluate the effect of WTs integration into the network. The effectiveness of the proposed method is demonstrated with an 84-bus 11.4 kV radial distribution system.  相似文献   

18.
为满足大规模风电集中接入对输电网扩展规划提出的安全性与经济性需求,提出了建设含大规模风电集中接入的输电网扩展规划平台的总体方案。应用综合考虑风险及经济性的输电网优化规划理论,开发了以风电场群功率波动分析、输电容量优化为核心,集运行中风电场出力的历史数据采集与管理、待建风电场信息处理以及最优规划方案综合评价一体化的信息管理和输电网扩展规划系统。构建了基于历史出力数据的风电场群出力汇聚演变模型、提出了利用在役风电场群历史出力规律性预测规划目标年风电场群出力的实用方法、建立了面对输电网的综合评价指标体系,为进行详尽的数据挖掘分析、高精度的出力预测、准确的方案评估和全局化的输电网扩展规划管理,提供了有力的技术支持。  相似文献   

19.
针对风电场实际情况,建立了异步风电机组稳态潮流计算模型,充分考虑了大型风电场内部箱式变压器的损耗,并给出了简化计算方法,在此基础上确定了一种适合大型风电场的无功补偿方案,即使用并联电容器组在发电机机端就地补偿和在风场变电站处集中补偿相结合的方式。在电力系统分析仿真软件Power Factoryl3.1环境里搭建出风场模型,并在一32节点的配电网中进行仿真计算。结果表明在确定大型风场的无功补偿方案时考虑箱变损耗是必要且有一定实际意义的,且所给出的无功补偿方案能达到预期目的。  相似文献   

20.
针对风电并网功率的平滑性需求,提出了一种考虑预测误差折现效应的风电场柔性并网策略。首先,考虑到超短期预测中功率预测误差随时间断面推移而变大的特点,引入t location-scale分布模拟前瞻周期内的风电出力;在此基础上,提出采用氢燃料电池蓄电池构成混合储能系统的策略,以充分发挥二者的互补优势和协同效益;最后,参考经济学资产定价模型,度量未来不同时间断面风电场运行成本的当前效益,并以前瞻周期内经折现之后的风电场运行经济性之和最优为目标函数,对风蓄氢系统进行优化调度。仿真结果表明,与不配置混合储能、不考虑未来经济折现效应的风电场相比,所提的优化策略能够实现更优的风电场柔性并网功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号