首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Epoxidized natural rubber (ENR) was prepared using the performic epoxidation method. TPVs based on ENR/PP blends were later prepared by melt‐mixing processes via dynamic vulcanization. The effects of blend ratios of ENR/PP, types of compatibilizers, and reactive blending were investigated. Phenolic modified polypropylene (Ph‐PP) and graft copolymer of maleic anhydride on polypropylene molecules (PP‐g‐MA) were prepared and used as blend compatibilizers and reactive blending components of ENR/Ph‐PP and ENR/PP‐g‐MA blends. It was found that the mixing torque, apparent shear stress and apparent shear viscosity increased with increasing levels of ENR. This is attributed to the higher viscosity of the pure ENR than that of the pure PP. Furthermore, there was a higher compatibilizing effect because of the chemical interaction between the polar groups in ENR and PP‐g‐MA or Ph‐PP. Mixing torque, shear flow properties (i.e., shear stress and shear viscosity) and mechanical properties (i.e., tensile strength, elongation at break, and hardness) of the TPVs prepared by reactive blending of ENR/Ph‐PP and ENR/PP‐g‐MA were lower than that of the samples without a compatibilizer. However, the TPVs prepared using Ph‐PP and PP‐g‐MA as compatibilizers exhibited higher values. We observed that the TPVs prepared from ENR/PP with Ph‐PP as a compatibilizer gave the highest rheological and mechanical properties, while the reactive blending of ENR/PP exhibited the lowest values. Trend of the properties corresponds to the morphology of the TPVs. That is, the TPV with Ph‐PP as a blend compatibilizer showed the smallest rubber particles dispersed in the PP matrix, while the reactive blending of ENR/PP‐g‐MA showed the largest particles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4729–4740, 2006  相似文献   

2.
Epoxidized natural rubbers (ENR) with various levels of epoxide groups were prepared. Thermoplastic vulcanizates based on 75/25 ENRs/PP blends with Ph‐PP compatibilizer were later prepared by dynamic vulcanization using sulfur curing system. Influence of various levels of epoxide groups on rheological, mechanical morphological properties, and swelling resistance of the TPVs was investigated. It was found that the mixing torque, apparent shear stress, apparent shear viscosity, tensile strength, and hardness properties increased with increasing levels of epoxide groups in the ENR molecules. This may be attributed to increasing level of chemical interaction between the methylol groups of the Ph‐PP molecules and polar functional groups of the ENR molecules. Also, the PP segments in the Ph‐PP molecules are capable of compatibilizing with the PP molecules used as a blend composition. In SEM micrographs, we observed finer dispersion of vulcanized rubber domains as increasing levels of epoxide contents. This corresponds to increasing trend of strength and hardness properties of the TPVs. An increasing trend of tension set and a decreasing trend of elongation at break were observed as increasing levels of epoxide groups in the ENR molecules. This is because of higher rigidity of the vulcanized ENR phase with higher epoxide groups. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3046–3052, 2006  相似文献   

3.
Maleated natural rubber (MNR) was prepared and used to formulate thermoplastic vulcanizates (TPVs) based on various MNR/PP blends. The influence of mixing methods on the TPVs properties was first studied. We found that mixing all ingredients in an internal mixer provided the TPVs with better mechanical properties. The final mixing torque, shear stress, and shear viscosity of the TPVs prepared with various blend ratios of MNR/PP increased with increasing levels of MNR in the blends. This may be attributed to higher shear viscosity of the pure MNR than that of the pure PP. Furthermore, as evidenced in SEM micrographs, the TPVs are two phase morphologies with dispersed small vulcanized rubber domains in the PP matrix. Therefore, the higher content of PP caused the more molten continuous phase of the flow during mixing and rheological characterization. Tensile strength and hardness of the TPVs increased with increasing levels of PP, while the elongation at break decreased. Furthermore, the elastomeric properties, in terms of tension set, increased with increasing levels of MNR in the blends. This may be attributed to decreasing trends in the size of vulcanized rubber particles dispersed in the PP matrix with an increasing concentration of MNR. POLYM. ENG. SCI. 46:594–600, 2006. © 2006 Society of Plastics Engineers.  相似文献   

4.
The phase morphology and surface properties of some maleated ethylene propylene‐diene/organoclay nanocomposites (EPDM‐g‐MA/OC) were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle measurements. The effect of organoclay and/or compatibilizing agent [maleic anhydride‐grafted polypropylene (PP‐g‐MA)] on the properties of the EPDM‐g‐MA nanocomposites was investigated. The quality and uniformity of nanoclay dispersion were analyzed by SEM and AFM images. The experimental results showed an intercalate structure and biphasic morphology for the binary blends based on EPDM and clay. The surface properties of the studied composites are significantly influenced by the presence of a compatibilizing agent—PP‐g‐MA. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

5.
Polypropylene (PP)‐clay nanocomposites were obtained and studied by using three different coupling agents, glycidyl methacrylate (GMA), acrylic acid (AA), and maleic anhydride (MA). Three different clays, natural montmorillonite (Cloisite Na+) and chemically modified clays Cloisite 20A and Cloisite 30B, have also been used. Nanocomposites were prepared by melt‐blending in a twin‐screw extruder using two mixing methods: two‐step mixing and one‐step mixing. The relative influence of each factor was observed from structural analysis by WAXD, POM, TEM, and mechanical properties. The results were analyzed in terms of the effect of each compatibilizing agent and incorporation method in the clay dispersion and mechanical properties of the nanocomposite. Experimental results showed that clay dispersion and interfacial adhesion are greatly affected by the kind of matrix modification. The polarity and reactivity of polar groups give as a result better interfacial adhesion and subsequent mechanical performance. PP‐g‐GMA and PP‐g‐MA were better compatibilizing agents than PP‐g‐AA. Better dispersion and exfoliation for the nanoclays were obtained when using two‐step mixing than one‐step mixing conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4748–4756, 2006  相似文献   

6.
In the present study, the fracture properties of different types of organophilic montmorillonite (OMMT) filled polyamide 6/polypropylene nanocomposites was investigated. Two types of compatibilizers, i.e., maleic anhydride grafted polypropylene (PP‐g‐MA) and maleic anhydride grafted styrene‐ethylene/butylene‐styrene (SEBS‐g‐MA) were used to compatibilize these systems. The tensile properties were studied through tensile test at two different testing speeds; 50 and 500 mm/min whereas the fracture properties were determined using single‐edge‐notch‐3 point‐bending (SEN‐3PB) specimens at three different testing speeds; 1, 100, and 500 mm/min. The presence of both PP‐g‐MA and SEBS‐g‐MA compatibilizers improved the tensile and fracture properties of nanocomposites due to the compatibilizing effect of both compatibilizers. SEBS‐g‐MA compatibilizer seemed to be more effective in improving the fracture toughness of nanocomposites than PP‐g‐MA especially at high testing speed. This was due to the elastomeric nature of SEBS‐g‐MA, which can provide a better toughening effect than the relatively harder PP‐g‐MA. POLYM. ENG. SCI., 50:1493–1504, 2010. © 2010 Society of Plastics Engineers  相似文献   

7.
In this work, maleic anhydride‐grafted polypropylene (PP‐g‐MAH) and maleic anhydride‐grafted poly(acrylonitrile‐butadiene‐styrene) (ABS‐g‐MAH) at 2 : 1 mass ratio were added as a compatibilizer in the PP/ABS blends. The compatibilizing effect was evaluated by adding the graft copolymers together with epoxy resin/imidazole curing agent (E51/2E4MZ). The reaction in reactive extrusion, morphological structure, and properties of PP and ABS blends were investigated by using infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X‐ray spectrum, transmission electron microscope (TEM), dynamic thermomechanical analysis (DMA), differential scanning calorimetry (DSC), and mechanical properties tests. The results showed that the compatibilizing effect was greatly improved because of the addition of the graft copolymers together with epoxy resin/imidazole curing agent (E51/2E4MZ) because the link structure of PP‐g‐MAH and ABS‐g‐MAH was formed by the reaction of anhydride group with epoxy group catalyzed by the imidazole. The size of the dispersed phase decreased dramatically, the interfacial adhesion between ABS particles and PP matrix was improved, and the tensile strength and flexural modulus of the PP/ABS blends increased further. The optimizing properties were obtained at 3 phr E51/2E4MZ. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40898.  相似文献   

8.
In this study, polyamide‐12 (PA12)/brominated isobutylene‐isoprene (BIIR) TPVs with good mechanical properties and low gas permeability were prepared by dynamic vulcanization in a twin‐screw extruder. The effects of three kinds of compatibilizers on the microstructure and properties of BIIR/PA12 TPV were studied. The compatibility between BIIR and PA12 was improved when maleated hydrocarbon polymeric compatibilizer is added. The reaction between maleic anhydride and amine in polyamide leads to the in situ formation of hydrocarbon polymer grafted polyamide which subsequently can be used to lower the interfacial tension between BIIR and polyamide. The compatibilizing effect of maleic anhydride modified polypropylene (PP‐g‐MAH) on BIIR/PA12 blends is the best among these compatibilizers because the surface energy of PP‐g‐MAH is very close to that of BIIR. The dispersed rubber phase of the blend compatibilized by PP‐g‐MAH shows the smallest size and more uniform size distribution, and the resulting TPVs show the best mechanical properties. The effects of fillers on the properties of BIIR/PA12 TPV were also investigated. The size of the BIIR phase increases with the increase in the content of CaCO3. The modulus and tensile strength of TPVs increased with the increase in the content of CaCO3 because of the reinforcing effect of CaCO3 on TPVs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43043.  相似文献   

9.
Maleic anhydride functionalized acrylonitrile–butadiene–styrene (ABS‐g‐MA) copolymers were prepared via an emulsion polymerization process. The ABS‐g‐MA copolymers were used to toughen polyamide 6 (PA‐6). Fourier transform infrared results show that the maleic anhydride (MA) grafted onto the polybutadiene phase of acrylonitrile–butadiene–styrene (ABS). Rheological testing identified chemical reactions between PA‐6 and ABS‐g‐MA. Transmission electron microscopy and scanning electron microscopy displayed the compatibilization reactions between MA of ABS‐g‐MA and the amine and/or amide groups of PA‐6 chain ends, which improved the disperse morphology of the ABS‐g‐MA copolymers in the PA‐6 matrix. The blends compatibilized with ABS‐g‐MA exhibited notched impact strengths of more than 900 J/m. A 1 wt % concentration of MA in ABS‐g‐MA appeared sufficient to improve the impact properties and decreased the brittle–ductile transition temperature from 50 to 10°C. Scanning electron microscopy results show that the shear yielding of the PA‐6 matrix was the major toughening mechanism. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
With the rising cost of petroleum‐based fibers, the utilization of plant fibers in the manufacture of polymer–matrix composites is gaining importance worldwide. The scope of this study was to examine the perspective of the use of pineapple leaf fibers (PALFs) as reinforcements for polypropylene (PP). These fibers are environmentally friendly, low‐cost byproducts of pineapple cultivation and are readily available in the northeastern region of India. Here, both untreated and treated pineapple fibers were used. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as a compatibilizing agent. The polymer matrix of PP was used to prepare composite specimens with different volume fractions (5–20%) of fibers by the addition of 5% of MA‐g‐PP. These specimens were tested for their mechanical properties, and additional assessments were made via observations by scanning electron microscopy, thermogravimetric analysis, and IR spectroscopy. Increase in the impact behavior, flexural properties, and tensile moduli of the composites were noticed, and these were more appreciable in the treated fibers mixed with MA‐g‐PP. PALF in 10 vol % in PP mixed with MA‐g‐PP was the optimum and recommended composition, where the flexural properties were the maximum. The impact strength and the tensile modulus were also considerably high. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene (SEBS) and styrene‐b‐(ethylene‐co‐propylene) (SEP, SEPSEP) block copolymers with different styrene contents and different numbers of blocks in the copolymer chain were functionalized by melt radical grafting with glycidyl methacrylate (GMA) and employed as compatibilizers for PET‐based blends. Binary blends of PET with both functionalized (SEBS‐g‐GMA, SEP‐g‐GMA, SEPSEP‐g‐GMA) and neat (SEBS, SEP, SEPSEP) copolymers (75 : 25 w/w) and ternary blends of PET and PP (75 : 25 w/w) with various amounts (2.5–10 phr) of both modified and unmodified copolymers were prepared in an internal mixer, and their properties were evaluated by SEM, DSC, melt viscosimetry, and tensile and impact tests. The roles of the chemical structure, grafting degree, and concentration of the various copolymers on blend compatibilization was investigated. The blends with the grafted copolymers showed a neat improvement of phase dispersion and interfacial adhesion compared to the blends with nonfunctionalized copolymers. The addition of grafted copolymers resulted in a marked increase in melt viscosity, which was accounted for by the occurrence of chemical reactions between the epoxide groups of GMA and the carboxyl/hydroxyl end groups of PET during melt mixing. Blends with SEPSEP‐g‐GMA and SEBS‐g‐GMA, at concentrations of 5–10 phr, showed a higher compatibilizing effect with enhanced elongation at break and impact resistance. The effectiveness of GMA‐functionalized SEBS was then compared to that of maleic anhydride–grafted SEBS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2201–2211, 2005  相似文献   

12.
Polypropylene (PP) and polystyrene (PS) are immiscible and incompatible. Since both PP and PS components possess no reactive functional group, reactive compatibilization of a PP/PS blend is impossible unless certain reactive functional groups are imparted to either PP or PS. In this study we provide a simple approach to reactively compatibilize the nonreactive PP/PS blend system by physically functionalizing PP and PS with the addition of maleic anhydride grafted PP (PP‐g‐MA) and styrene maleic anhydride random copolymer (SMA), respectively. An epoxy monomer, serving as a coupler and possessing four epoxy groups able to react with the maleic anhydride of PP‐g‐MA and SMA, was then added during melt blending. Observations of the finer PS domain sizes and improved mechanical properties support the plausibility of reactive compatibilization of this nonreactive PP/PS blend by combining physically functionalized PP and PS with tetra‐glycidyl ether of diphenyl diamino methane (TGDDM) in a one‐step extrusion process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

13.
In this study, dual compatibilizers composed of the commercially available maleic anhydride‐grafted polypropylene (PP–MA) and a multifunctional epoxy resin were demonstrated to effectively compatibilize the immiscible and incompatible blends of PP and poly(butylene terephthalate) (PBT). The PP–MA with a low MA content is totally miscible with PP to make the PP phase quasi‐functionalized, so that the multifunctional epoxy has the chance to react with PBT and PP–MA simultaneously to form PP–MA‐co‐epoxy‐co‐PBT copolymers at the interface. These desired copolymers are able to anchor along the interface and serve as efficient compatibilizers. The compatibilized blends, depending on the quantity of dual compatibilizers employed, exhibit higher viscosity, finer phase domain, and improved mechanical properties. Epoxy does not show compatibilization effects for the PP/PBT blends without the presence of PP–MA in the blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2272–2285, 2001  相似文献   

14.
BACKGROUND: Polymer/clay (silicate) systems exhibit great promise for industrial applications due to their ability to display synergistically advanced properties with relatively small amounts of clay loads. The effects of various compatibilizers on styrene–ethylene–butylene–styrene block copolymer (SEBS)/clay nanocomposites with various amounts of clay using a melt mixing process are investigated. RESULTS: SEBS/clay nanocomposites were prepared via melt mixing. Two types of maleated compatibilizers, styrene–ethylene–butylene–styrene block copolymer grafted maleic anhydride (SEBS‐g‐MA) and polypropylene grafted maleic anhydride (PP‐g‐MA), were incorporated to improve the dispersion of various amounts of commercial organoclay (denoted as 20A). Experimental samples were analyzed using X‐ray diffraction and transmission electron microscopy. Thermal stability was enhanced through the addition of clay with or without compatibilizers. The dynamic mechanical properties and rheological properties indicated enhanced interaction for the compatibilized nanocomposites. In particular, the PP‐g‐MA compatibilized system conferred higher tensile strength or Young's modulus than the SEBS‐g‐MA compatibilized system, although SEBS‐g‐MA seemed to further expand the interlayer spacing of the clay compared with PP‐g‐MA. CONCLUSION: These unusual results suggest that the matrix properties and compatibilizer types are crucial factors in attaining the best mechanical property performance at a specific clay content. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
Polypropylene/fumed hydrophilic silica nanocomposites were prepared via melt mixing method using a single‐screw extruder. Comparative study with and without compatibilizing copolymer agent (maleic anhydride grafted polypropylene: PP‐g‐AM) was conducted. The obtained results were interpreted in terms of silica nanoparticle–silica nanoparticle and silica nanoparticle‐polymer interactions. These results have shown that the addition of nanofillers improves the properties of the nanocomposites. From transmission electron microscopy, it was found that agglomerations of silica particles into the PP matrix increased in average size with increasing silica contents, except in presence of the copolymer. Storage modulus values of the nanocomposites measured by dynamic mechanical thermal analysis were sensitive to the microstructure of the nanocomposites. Higher silica contents resulted in higher storage modulus, revealing that the material became stiffer. By adding the compatibilizer, a further increase of storage modulus was observed due to the finer dispersion of the filler in the matrix and the increased interfacial adhesion. Crystallization rates were found to increase with the increase of silica nanoparticles as well as PP‐g‐MA content. In addition, silica nanoparticles and the compatibilizing agent present centers of germination and nucleation of crystallites. Thus, the use of the coupling agent resulted in a further enhancement of mechanical properties of the nanocomposites due to the reduction of silica agglomeration. POLYM. ENG. SCI., 54:2187–2196, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Elastomeric Chlorosulfonated polyethylene (Hypalon®) and thermoplastic Polypropylene (PP) based thermoplastic vulcanizates (TPVs) were prepared in presence of different doses of compatibilizer, maleic anhydride grafted PP (PP‐g‐MA) by employing dynamic vulcanization technique. The effect of incorporation in different proportions of compatibilizer on mechanical, spectral, morphological, thermal, and rheological properties of such TPVs was studied and the same were compared to that of virgin PP and amongst themselves. The mechanical analysis of the prepared TPVs exhibited significant improvements in stress at 25% modulus, ultimate tensile strength (UTS), and hardness values. FTIR studies revealed that a chemical interaction had taken place between Hypalon® and functionalized compatibilizer during the process of dynamic vulcanization which led to an enhancement of interfacial adhesion between them. The two‐phase morphologies were clearly observed by scanning electron microscopic studies. The Tg values of Hypalon® was modified in the TPVs as exhibited by differential scanning calorimetric studies. TGA studies indicated the increase in thermal stability of all TPVs with respect to the elastomeric Hypalon®. Rheological properties showed that the compatibilizer reduces the melt viscosity of TPVs and thus facilitates the processibility of such TPVs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40312.  相似文献   

17.
The effect of maleic anhydride grafted polypropylene (MA‐g‐PP) compatibilizer on the mechanical and electrical properties of a polypropylene‐carbon nanotube composite is presented. Commercially available grades of polypropylene homopolymer (PP) and multiwalled CNT (MCNT) were used to prepare composites (PP/MCNT) by melt compounding. The effects of maleic anhydride graft level and loading on material properties were investigated. The addition of MCNT without compatibilizer enhanced the mechanical properties of PP, whereas addition of both grades of MA‐g‐PP alone had a detrimental effect. When MA‐g‐PP was added as a compatiblizer to the PP/MCNT composite, flexural and tensile moduli increased, indicating that enhanced levels of MCNT dispersion within PP had been achieved. Strength of the nanocomposite decreased with the addition of both grades of MA‐g‐PP, possibly due to the deterioration of the mechanical properties of the polymer in the presence of lower molecular weight MA‐g‐PP. Electrical resistivity improved with both grades of MA‐g‐PP, with higher maleic anhydride graft levels having the most significant effect. Scanning electron microscopy analysis confirmed that the optimum state of dispersion was for the nanocomposite prepared with MA‐g‐PP with highest grafting level. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
The effects of compatibilizing reactions on the viscoelastic properties and morphology of ethylene‐methyl acrylate copolymers were studied. Potentially reactive blends of styrene‐maleic anhydride copolymer (SMAH) and a terpolymer of ethylene/methyl acrylate/glycidyl methacrylate (E‐MA‐GMA) were compared with a non‐reactive blend of SMAH and an ethylene/methyl acrylate (E‐MA) copolymer with similar rheological properties. Melt mixing was carried out in a batch mixer and in a co‐rotating twin screw extruder. The morphology of the reactive blends showed smaller domain sizes than the non‐reactive blends, and the viscoelastic properties of the blends were very different. The storage and loss moduli and the complex viscosity of the reactive blends were greater than those of non‐reactive blends. The reactive blends had a higher zero shear viscosity, plateau modulus and mean relaxation time than their non‐reactive counterparts, indicating a higher degree of melt elasticity. The melt elasticity was maximum at 25% functionalized ethylene‐methyl acrylate concentration.  相似文献   

19.
Thermoplastic vulcanizates (TPVs) are a special class of thermoplastic elastomer, produced by simultaneously mixing and cross‐linking a rubber with a thermoplastic at elevated temperature. Dicumyl peroxide‐cured TPVs based on blends of maleated ethylene propylene rubber (m‐EPM) and polypropylene (PP) thermoplastic using maleated‐PP as a compatibilizer have been developed. To reinforce the properties of these TPVs, nanosilica was added at different levels. With the increase of nanosilica concentrations, significant improvement in tensile strength, modulus, and impact strength of TPVs have been achieved. Morphology study shows that nanosilica is uniformly dispersed in the polymer matrices. Dynamic mechanical analysis shows that tan δ value at low temperature decreases with increasing nanosilica concentration indicating less damping characteristics. Thermogravimetric study revealed that thermal stability of TPVs is improved in presence of nanosilica. Equilibrium swelling study confirms that solvent resistance of TPVs could be improved by nanofiller incorporation. Rubber process analyzer found a very useful tool to understand the melt rheology of nanosilica filled TPVs in terms of dynamic functions over a wide range of strain amplitude and frequency. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

20.
Zinc neutralized maleated natural rubbers (Zn‐MNR) were prepared by solution grafting and neutralization with zinc acetate in one‐step. It was later used for blending with carboxylated nitrile rubber (XNBR) in the composition of 50/50 parts by weight. The effect of grafted anhydride content (1.2, 1.6, 2.0, and 2.5% wt of NR) on the tensile properties of ionic rubber blends (Zn‐MNR/XNBR) was investigated. The tensile strength of the ionic blends was found to be greater than those of pure rubbers. The modulus, tensile, and tear strength of the blends dramatically increased with increasing levels of grafted anhydride. The ionic rubber blends also possessed superior physical properties compared to those of the corresponding nonionic rubber blends (MNR/XNBR). Dynamic mechanical thermal analysis and scanning electron microscopic studies were performed to verify the process of mixing. Fourier transform infrared spectroscopic studies were carried out to characterize the nature of specific intermolecular interactions between Zn‐MNR and XNBR chain segments. The results indicated that the ion‐ion (Zn+ ‐COO?) interactions between Zn‐MNR and XNBR are formed at the interface, which provides the mean of compatibilization in the ionic rubber blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号