首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure, thermal expansion rate, electrical conductivity and electrochemical performance of Sm0.5Sr0.5MxCo1−xO3−δ (M = Fe, Mn) have been investigated. Two crystal structures have been observed in the specimens of Sm0.5Sr0.5FexCo1−xO3−δ (SSFC) at room temperature, the perovskite structure of SSFC has an orthorhombic symmetry for 0 ≤ x ≤ 0.4 and a cubic symmetry for 0.5 ≤ x ≤ 0.9. The specimens of Sm0.5Sr0.5MnxCo1−xO3−δ (SSMC) crystallize in an orthorhombic structure. The adjustment of thermal expansion rate to electrolyte, which is one of the main problems of SSC, can be achieved to lower TEC values with more Fe and Mn substitution. Especially, Sm0.5Sr0.5Mn0.8Co0.2O3−δ exhibits good thermal compatibility with La0.8Sr0.2Ga0.8Mg0.2O3. High electrical conductivities are obtained for all the specimens and they demonstrate above 100 S/cm at 800 °C in SSFC system. The polarization resistance increases with increasing Mn content, Nevertheless, the polarization resistance of SSFC increases with increasing Fe content, but when the amount of Fe reaches to 0.4, the maximum is obtained while the resistance will decrease when the amount of Fe reaches above 0.4. Sm0.5Sr0.5Fe0.8Co0.2O3−δ electrode exhibits high catalytic activity for oxygen reduction operating at temperature from 700 to 800 °C.  相似文献   

2.
In this study porous cell stacks were investigated for their ability to remove NOx electrochemically. The cell stacks were made from laminated tapes of porous electrolyte Ce0.9Gd0.1O1.95 and composite electrodes of La1−xSrxMnO3 (x = 0.15, and 0.5) and ceria doped with Gd or Pr. The cell stacks were infiltrated with nano-particles of pure ceria, Ce0.9Gd0.1O1.95 and Ce0.8Pr0.2O2−δ after sintering. A gas stream containing NO were sent through the cell stack. When the cell stacks were polarised with 0.75 V per cell then it was possible to remove some of the NOx in the temperature interval of 250-400 °C. The cell stacks infiltrated with ceria showed the highest activity, while the ones infiltrated with Ce0.9Gd0.1O1.95 had the highest selectivity towards NO compared to O2. When the cell stack was polarised with 1.5 V for each cell it was possible to remove up to 35% of NO present.  相似文献   

3.
Single-crystalline Ti1−xNbxO2 (x = 0.2) films of 40 nm thickness were deposited on SrTiO3 (100) substrates by the pulsed laser deposition (PLD) technique. X-ray diffraction measurement confirmed epitaxial growth of anatase (001) film. The resistivity of Ti1−xNbxO2 films with x ≥ 0.03 is 2-3 × 10− 4 Ω cm at room temperature. The carrier density of Ti1−xNbxO2, which is almost proportional to the Nb concentration, can be controlled in a range of 1 × 1019 to 2 × 1021 cm− 3. Optical measurements revealed that internal transmittance in the visible and near-infrared region for films with x = 0.03 was more than 97%. These results demonstrate that the presently developed anatase Ti1−xNbxO2 is one of the promising candidates for the practical TCOs.  相似文献   

4.
The Er2+xTi2−xO7−δ (x = 0.096; 35.5 mol% Er2O3) solid solution and the stoichiometric pyrochlore-structured compound Er2Ti2O7 (x = 0; 33.3 mol% Er2O3) are characterized by X-ray diffraction (phase analysis and Rietveld method), thermal analysis and optical spectroscopy. Both oxides were synthesized by thermal sintering of co-precipitated powders. The synthesis study was performed in the temperature range 650-1690 °C. The amorphous phase exists below 700 °C. The crystallization of the ordered pyrochlore phase (P) in the range 800-1000 °C is accompanied by oxygen release. The ordered pyrochlore phase (P) exists in the range 1000−1200 °C. Heat-treatment at T ≥ 1600 °C leads to the formation of an oxide ion-conducting phase with a distorted pyrochlore structure (P2) and an ionic conductivity of about 10−3 S/cm at 740 °C. Complex impedance spectra are used to separately assess the bulk and grain-boundary conductivity of the samples. At 700 °C and oxygen pressures above 10−10 Pa, the Er2+xTi2−xO7−δ (x = 0, 0.096) samples are purely ionic conductors.  相似文献   

5.
Perovskite type oxides Ln0.6Sr0.4Co0.8Mn0.2O3−δ (Ln=La, Gd, Sm, or Nd) have been prepared by the solid state reaction of corresponding oxides. The crystal parameters of the compositions were determined by XRD powder diffraction, which revealed that all the compositions have orthorhombic structure. The reaction test of all samples with Ce0.8Gd0.2O1.9 was carried out at 1200 °C for 48 h, and no reaction product was detected by XRD. The change in mass of La0.6Sr0.4Co0.8Mn0.2O3−δ as a function of temperature was determined by thermogravimetric analysis (TGA). The electrical conductivity of the sintered samples were measured as a function of temperature from 200 to 1000 °C. The highest conductivity of about 1400 S cm−1 was found in La0.6Sr0.4Co0.8Mn0.2O3−δ. The cathodic polarization of these oxides electrodes deposited on Ce0.8Gd0.2O1.9 tablet was studied at 500-800 °C in air.  相似文献   

6.
We investigated isomorphous substitution of several metal atoms in the Aurivillius structures, Bi5TiNbWO15 and Bi4Ti3O12, in an effort to understand structure-property correlations. Our investigations have led to the synthesis of new derivatives, Bi4LnTiMWO15 (Ln = La, Pr; M = Nb, Ta), as well as Bi4PbNb2WO15 and Bi3LaPbNb2WO15, that largely retain the Aurivillius (n = 1) + (n = 2) intergrowth structure of the parent oxide Bi5TiNbWO15, but characteristically tend toward a centrosymmetric/tetragonal structure for the Ln-substituted derivatives. On the other hand, coupled substitution, 2TiIV → MV + FeIII in Bi4Ti3O12, yields new Aurivillius phases, Bi4Ti3−2xNbxFexO12 (x = 0.25, 0.50) and Bi4Ti3−2xTaxFexO12 (x = 0.25) that retain the orthorhombic noncentrosymmetric structure of the parent Bi4Ti3O12. Two new members of this family, Bi2Sr2Nb2RuO12 and Bi2SrNaNb2RuO12 that are analogous to Bi2Sr2Nb2TiO12, possessing tetragonal (I4/mmm) Aurivillius structure have also been synthesized.  相似文献   

7.
Oxides belonging to the families Ba3ZnTa2−xNbxO9 and Ba3MgTa2−xNbxO9 were synthesized by the solid state reaction route. Sintering temperatures of 1300°C led to oxides with disordered (cubic) perovskite structure. However, on sintering at 1425°C hexagonally ordered structures were obtained for Ba3MgTa2−xNbxO9 over the entire range (0≤x≤1) of composition, while for Ba3ZnTa2−xNbxO9 the ordered structure exists in a limited range (0≤x≤0.5). The dielectric constant is close to 30 for the Ba3ZnTa2−xNbxO9 family of oxides while the Mg analogues have lower dielectric constant of ∼18 in the range 50 Hz to 500 kHz. At microwave frequencies (5-7 GHz) dielectric constant increases with increase in niobium concentration (22-26) for Ba3ZnTa2−xNbxO9; for Ba3MgTa2−xNbxO9 it varies between 12 and 14. The “Zn” compounds have much higher quality factors and lower temperature coefficient of resonant frequency compared to the “Mg” analogues.  相似文献   

8.
In this study, bulk ceramics with general formula Bi1−ySryFe(1−y)(1−x)Sc(1−y)xTiyO3 (x = 0-0.2, y = 0.1-0.3 mol%) were prepared by traditional solid-state reaction method. As a comparison, bulk BiFeO3 (BF) was also sintered by rapid sintering method. Their structural, magnetic, dielectric properties were investigated. X-ray diffraction analysis indicated that apart from a small amount of secondary phase detected in BF, all other samples crystallized in pure perovskite structure and maintained original R3c space group. The room temperature M-H curves were obtained. While BF had a coercive magnetic field (Hc) of 150 Oe, Bi1−ySryFe1−yTiyO3 solid solutions had a much larger value (for y = 0.1, 0.2, 0.3, Hc were 4537, 5230 and 3578 Oe, respectively). Sc3+ substitution decreased the Hc values of these solid solutions remarkably, and resulted in soft magnetic properties, as well as a decrease of the dielectric loss. At 1 MHz, the tan δ of Bi0.7Sr0.3Fe0.7(1−x)Sc0.7xTi0.3O3 with x = 0.05, 0.1, 0.15, 0.2 were 0.1545, 0.1078, 0.1046 and 0.1701, respectively.  相似文献   

9.
Orthorhombic perovskite-type Ca(Mn1−xTix)O3−δ (0 ≤ x ≤ 0.7) was synthesized at 1173 K for 12 h in a flow of oxygen from a precursor gel prepared using citric acid and ethylene glycol. The Mn3+ ion was generated by substituting a Ti4+ ion in CaMnO3. The average particle size was 100-300 nm and did not depend on x. The lattice constants and the (Mn, Ti)-O distance increased linearly with increasing x. The variation in global instability index (GII) indicated that the instability of the structure increases monotonically with increasing x. Ca(Mn1−xTix)O3−δ was an n-type semiconductor that had its minimum values of electrical resistivity (ρ) and activation energy (Ea) at x = 0.1. Ca(Mn1−xTix)O3−δ (x = 0 and 0.1) exhibited a weak ferromagnetic behavior. The variation in μeff indicated that the spin state of the Mn3+ ion changes from low to high at x = 0.1, then reverts to low in the range of 0.2 ≤ x ≤ 0.7. The variations in ρ and Ea are explained by the number of electrons according to the change in the spin state of the Mn3+ ion.  相似文献   

10.
Sr2−xCaxBi4Ti5O18(x = 0, 0.05) powders synthesized by solid state route were uniaxially pressed and sintered at 1225 °C for 2 h. The obtained dense ceramics exhibited crystallographic anisotropy with a dominant c axis parallel to the uniaxial pressing direction which was quantified in terms of the Lotgering factor. Microstructure anisotropy of both compositions (x = 0, 0.05) consisted of plate like grains exhibiting their larger surfaces mostly perpendicular to the uniaxial pressing direction. Dielectric and ferroelectric properties of Sr2−xCaxBi4Ti5O18 ceramics were measured under an electric field (E) applied parallel and perpendicularly to uniaxial pressing direction. The obtained dielectric ?R(T) and polarization (P-E) curves depended strongly on E direction thus denoting a significant effect from microstructure and crystallographic texture. Sr2−xCaxBi4Ti5O18 properties were also significantly affected by Ca content (x): Curie temperature increased from 280 °C (x = 0) to 310 °C (x = 0.05) while ?R and remnant polarization decreased for x = 0.05. The present results are discussed within the framework of the processing and crystal structure-properties relationships of Aurivillius oxides ceramics.  相似文献   

11.
10 mol% Pb(Fe1/2Nb1/2)O3 (PFN) modified Pb(Mg1/3Nb2/3)O3-PbZr0.52Ti0.48O3 (PMN-PZT) relaxor ferroelectric ceramics with compositions of (0.9 − x)PMN-0.1PFN-xPZT (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were prepared. X-ray diffraction investigations indicated that as-prepared ceramics were of pure perovskite phase and the sample with composition of x = 0.8 was close to morphotropic phase boundary (MPB) between rhombohedral and tetragonal phase. Dielectric properties of the as-prepared ceramics were measured, and the Curie temperature (Tc) increased sharply with increasing PZT content and could be higher than 300 °C around morphotropic phase boundary (MPB) area. At 1 kHz, the sample with composition of x = 0.1 had the largest room temperature dielectric constant ?r = 3519 and maximum dielectric constant ?m = 20,475 at Tm, while the sample with composition of x = 0.3 possessed the maximum dielectric relaxor factor of γ = 1.94. The largest d33 = 318 pC/N could be obtained from as-prepared ceramics at x = 0.9. The maximum remnant polarization (Pr = 28.3 μC/cm2) was obtained from as-prepared ceramics at x = 0.4.  相似文献   

12.
BaCe0.8Y0.2O3−δ and BaCe0.9−xYxNb0.1O3−δ (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35) were prepared by a solid-state reactions. It was found that the BaCe0.8Y0.2O3−δ samples decomposed into CeO2 and BaCO3 after being exposed in the atmosphere (3% CO2 + 3% H2O + 94% N2) at 700 °C for 10 h. However, samples containing Nb remains unchanged in the same conditions, demonstrating a better stability in the presence of CO2 and H2O. The conductivity of BaCe0.9−xYxNb0.1O3−δ increased with the increase of Y content (x ≤ 0.30), and the highest value was observed at x = 0.30 where a significant decrease in conductivity took place at x = 0.35. The conductivity of BaCe0.6Y0.3Nb0.1O3−δ reaches 0.01 S/cm in humid hydrogen at 700 °C, slight lower than BaCe0.8Y0.2O3−δ, 0.012 S/cm in the same conditions. Fuel cell with BaCe0.6Y0.3Nb0.1O3−δ as-prepared was successfully prepared and humidified hydrogen was supplied as fuels in evaluating the fuel cell performance. The open circuit voltage, peak power density and interfacial resistance at 700 °C were 1.02 V, 345 mW/cm2 and 0.27 Ω cm2, respectively.  相似文献   

13.
All-solid-state cells of the configuration (−)Ag + SE//SE//I2-phenothiazine + C(+) using the best conducting compositions of the solid electrolyte systems, namely, Cu1−xAgxI-Ag2O-Y where x = 0.05, 0.1, 0.15, 0.2 and 0.25, Y = MoO3, B2O3, SeO2, V2O5 and CrO3, as the electrolytes were fabricated. Discharge, polarization and power characteristics of these cells were also evaluated. The open circuit voltage values of these cells were in the range 620-635 mV. The stability of these cells has been indicated by the constancy of their OCV over a period of 6 months. The polarization and discharge studies on these cells have shown that typical cells based on the electrolytes with Y = B2O3, SeO2 and V2O5 would possess discharge capacities of 12.84, 3.76 and 5.05 mA h and specific energy of 6.55, 1.81 and 2.77 W h kg−1, respectively. The solid electrolytes have good electrochemical stability and compatibility with the Ag/Phenothiazine-I2 electrode couple thus offering their suitability of application in microwatt power sources.  相似文献   

14.
A new class of LiNi1−xCaxO2 (x = 0.0, 0.1, 0.2, 0.3 and 0.5) layered oxide materials has been synthesized by a simple low temperature solid-state route with mixed nitrates/urea with glycerol as the starting materials. First we have taken TG/DTA for observing the phase transformations of LiNi0.9Ca0.1O2. The structure of the synthesized oxides was analyzed using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) to identify the crystal structure and cation environment, respectively. The synthesized ceramic oxide battery materials were examined by using transmission electron microscope (TEM), scanning electron microscope (SEM) analysis to determine the particle size, nature and morphological structure. SEM with energy dispersive X-ray spectroscopic analysis (EDAX) analysis was carried out to explore the composition of the prepared materials. The electrochemical performance of LiNi1−xCaxO2 electrodes was analyzed using cyclic voltammetry (CV) and galvanostatic charge-discharge cycling studies in the voltage range 3.0-4.5 V. Electrode made with cathode active material, acetylene black and poly(vinylidene difluoride) yield a discharge capacity of 178.1 mAh g−1 (x = 0.2) with good specific capacity over several charge-discharge cycles. These results have been also supported by cyclic voltammograms.  相似文献   

15.
Ti1−zNbzN ceramics were fabricated by sintering nanocrystalline titanium-niobium oxynitride (Ti1−zNbzOxNy) powders using spark plasma sintering (SPS) technique at 1060 °C for 3 min in an N2 atmosphere. The phase composition and microstructure were characterized by XRD, SEM, TEM and EDS. The results showed that Ti1−zNbzN ceramics remained the cubic structures of Ti1−zNbzOxNy powders. There were XRD peak shifts in the cubic phases between Ti1−zNbzN ceramics and corresponding Ti1−zNbzOxNy powders. During the sintering process, oxygen separated from Ti1−zNbzOxNy to form titanium-niobium oxides. Ti1−zNbzN (0 < z < 1) had a more compact structure than TiOxNy and NbOxNy. Ti0.5Nb0.5N ceramic had the biggest grain size in the series of Ti1−zNbzN.  相似文献   

16.
Ba0.7Sr0.3(Ti1  xZrx)O3 (x = 0, 0.1, 0.2) (BSZT) thin films have been prepared on copper foils using sol-gel method. The films were annealed in an atmosphere with low oxygen pressure so that the substrate oxidation was avoided and the formation of the perovskite phase was allowed. The X-ray diffraction results show a stable polycrystalline perovskite phase, with the diffraction peaks of the BSZT films shifting toward the smaller 2θ with increasing Zr content. Scanning electron microscopy images show that the grain size of the BSZT thin films decreases with increasing Zr content. High resolution transmission electron microscopy shows the clear lattice and domain structure in the film. The dielectric peaks of the BSZT thin films broaden with increasing Zr content. Leakage current density of Ba0.7Sr0.3(Ti1  xZrx)O3 (x = 0.1) thin film is the lowest over the whole applied voltage.  相似文献   

17.
Microwave dielectric ceramics in the Sr1−xCaxLa4Ti5O17 (0 ≤ x ≤ 1) composition series were prepared through a solid state mixed oxide route. All the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1450-1580 °C. Theoretical density and molar volume decreased due to the substitution of Ca2+ for Sr2+ which was associated with a decrease in the dielectric constant (?r) and temperature coefficient of resonant frequency (τf) but an increase in quality factor, Qfo. Optimum properties were achieved for Sr0.4Ca0.6La4Ti5O17 which exhibited, ?r ∼ 53.7, Qfo ∼ 11,532 GHz and τf ∼ −1.4 ppm/°C.  相似文献   

18.
The electrochemical reduction of nitrous oxide and oxygen has been studied on cone-shaped electrodes of La1−xSrxFeO3−δ perovskites in an all solid state cell, using cyclic voltammetry. It was shown that the activity of the La1−xSrxFeO3−δ perovskites for the electrochemical reduction of nitrous oxide mainly depends on the amount of Fe(III) and oxide ion vacancies. The activity of the La1−xSrxFeO3−δ perovskites towards the electrochemical reduction of nitrous oxide is much lower than the activity of the La1−xSrxFeO3−δ perovskites towards the electrochemical reduction of oxygen, making the possibility of electrochemically reducing nitrous oxide selectively in an exhaust gas containing excess oxygen on this type of materials very doubtful.  相似文献   

19.
Perovskites are important materials in a number of important technological applications, including solid oxide fuel cells, catalysis, and giant magneto-resistance materials. For many of these purposes, a mixture of B-cations can be used to tune the desired properties, e.g., oxygen reduction, ionic conductivity. For a solid oxide fuel cell, two particular ceramic components are of critical importance and have been extensively studied, the cathode (La0.8Sr0.2)MnO3−x and the interconnect material (La0.8Sr0.2)CrO3. In this study, we examined the mixed B-cation perovskites (La0.8Sr0.2)(M0.9Ni0.1)O3 (M = Mn, Cr). All materials were synthesized using the glycine-nitrate method, followed by air annealing. The structures were determined using powder neutron diffraction methods. Refinement of the data showed that even at this low concentration, the compounds have monoclinic symmetry (P21/n) and that the nickel had a strong preference for the smaller of the two octahedral sites. This small amount of nickel substituted on the B-site resulted in a symmetry reduction when compared to the unsubstituted (LaSr)MnO3 or (LaSr)CrO3 materials. Although this structural type has been seen previously in heavily substituted perovskites, these materials show that even at this low level of substitution a segregation of the metals in a manner similar to the double perovskites A2BB′O6−x can be detected. This may have implications involving material stresses on cycling that may result as the temperature is raised or lowered through this crystallographic transition.  相似文献   

20.
The structural and electrical properties of La0.75Sr0.25MnO3 (LSMO) film on Bi4Ti3O12 (BTO)/CeO2/YSZ buffered Si1−xGex/Si (0.05 ≤ x ≤ 0.2 for compressive strain), blank Si, and Si1−yCy/Si (y = 0.01 for tensile) were studied. X-ray high resolution reciprocal lattice mapping (HRRLM) and atomic force microscopy (AFM) show that structural properties of LSMO and buffer oxide layers are strongly related to the strain induced by amount of Ge and C contents. The RMS roughness of LSMO on Si1−xGex/Si has a tendency to increase with increasing of Ge content. Electrical properties of LSMO film with Ge content up to 10% are slightly improved compared to blank Si whereas higher resistivity values were obtained for the samples with higher Ge content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号